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1. Executive Summary

The research described in the present report has been concerned with the

fundamental fluid dynamics of mixing in a plane shear layer, with emphasis on novel QUALITY

4
approaches to mixing manipulation and control that utilize amplitude and phase

excitation. Because shear layer flows of practical interest are subjected to temporally

and spatially complex disturbances with important consequences to the mixing. our

work has also focused on the pursuit of the conceptual mechanisms of mixing transition

in, ing spanwise-nonuniform and -nonharmonic (pulsed) excitation. This work has

been supported by AFOSR Grants 86-0324 and 88-0271.

Efficient mixing of chemical species in free shear flows at high enough Reynolds

numbers is limited by fluid motions induced by a hierarchy of large coherent vortical

structures. In the plane shear layer, mixing is accomplished by nominally two-

dimensional entrainment of irrotational fluid from both streams by the spanwise

vortices, and three-dimensional motion induced by packets of streamwise counter-

rotating vortex pairs that form in the braid region between the spanwise vortices.

Because these vortices evolve from two- and three-dimensional instabilities of the mean

flow, they are manipulated in our experiments by excitation at the flow partition.

Even though the role of the streamwise vortices in the mixing process has been

known for some time, the mechanisms by which the three-dimensional small-scale

motions develop and lead to mixing transition has been an enigma. The present

research has determined that as a result of the interaction between streamwise vortices

and adjacent spanwise vortices, the mean velocity distribution in planes normal to flow

- I -
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direction is significantly distorted. The appearance of a spanwise-regular pattern of

inflection points at the high- and low-speed edges of the layer indicates the formation

of locally unstable regions of large shear. Breakdown to turbulence is initiated in this

region as a result of a rapid amplification of broadband disturbances already present in

the base flow. Furthermore, mixing may be significantly intensified when the flow is

subjected to spanwise-nonuniform excitation.

We have demonstrated that spanwise core deformations of the primary vortices

can also lead to the formation of secondary vortical structures in the braid region.

Core deformations of the primary vortices are induced by spanwise phase distortions of

the excitation wave train, and the shape and strength of the induced secondary vortices

vary with spanwise phase distributions. Visualization of these secondary vortical

structures sheds light on the nature of "dislocations" of the primary vortices previously

observed by a number of other investigators. The appearance of small-scale structures

within the large coherent vortices in connection with the core deformations suggests that

while the appearance of streamwise vortices in the braid region as a result of localized

upstream disturbances is important for the initiation of small-scale mixing, core

deformations of the primary vortices are responsible for the continuation of the mixing

process far downstream of the mixing transition.

We have discovered that the plane mixing layer is extremely receptive to pulsed

excitation in the braid region. The ensuing disturbance spreads rapidly in the

streamwise and spanwise directions and is characterized by enhanced turbulence

intensity much like a turbulent spot in a laminar boundary layer. We have developed a

demodulation technique that is analogous to the wavelet transform. This technique was

applied to our experimental data and has enabled us to capture dynamical features of

the disturbance and the concomitant distortion of the two-dimensional base flow. The

rapid spatial and temporal spreading of a pulsed disturbance in the span of the flow

has been exploited in an investigation of the evolution of a temporally and spatially
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regular pattern of such turbulent structures, which may be useful from the standpoint

of mixing enhancement. We expect that this scheme will be a viable improvement over

current technology of pulsed combustion.

The present report is comprised of three major parts. In the first part (§3), we

discuss the formation and evolution of the streamwise vortices and the generation of

small scale motion. In the second part (§4), we discuss the effects of spanwise-

nonuniform phase excitation. Finally, the third part (§5) is concerned with pulsed

excitation. Because all three parts of the present research have been conducted in the

same experimental facility, we begin the report with a description of the experimental

hardware and techniques.

6



2. Facility. Actuators, and Flow Visualization

2.1. The Water Shear Layer Facility

The facility is shown in figure 2.1. The entire flow is driven by a single pump

powered by a 10-hp motor equipped with a solid-state speed controller. The velocity

of each stream can be independently varied, and test-section velocities up to 200 cm/sec

can be realized. Two interchangeable 100-cm-long test sections with cross sections of

10 cm x 22 cm and 22 cm x 22 cm are equipped with Lucite walls so that the flow can

be observed from any direction. The convergence of the test section on either side of

the shear layer can be adjusted easily in order to vary the streamwise pressure

gradient. Two interchangeable contractions (with contraction ratios of 7:1 and 9:1) have

rectangular cross sections with constant aspect ratios. Turning vanes and "turbulence

manipulators" (honeycomb and screens) upstream of the crntraction reduce velocity

variations due to secondary flow. The turbulence level in the free streams is less than

0.15%. The replaceable trailing edges of the flow partition are configured with various

mosaics of surface heaters for flow manipulation, described in §2.2.

The facility is equipped with a suite of diagnostic instrumentation. A pressure

transducer is connected to two 12-port fast switches. These switches are computer-

controlled and allow for monitoring of the velocity on either side of the contraction exit

plane and the static pressure along the test section, as well as Pitot-static measurements

of the velocity field within the test section. The water temperature is monitored and

recorded by the laboratory computer via a digital thermometer. Fifteen dye injection

ports are available on each side of the flow partition. A computer-controlled two-axis

traverse mechanism, designed for detailed measurements of the flow field within the

test section u ith rakes of hot-wire probes, has been installed. Twenty channels of hot-

wire/film anemometry are available for simultaneous measurement of instantaneous

velocity distributions. A rake of 31 hot-wire sensors, 2 mm apart and suitable for use

in water, is mounted on the traverse mechanism for simultaneous cross-stream or

-4-
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spanwise measurement of the streamwise velocity. A Masscomp laboratory computer

system, including 16 channels of 12-bit A/D, 16 channels of D/A, and 32 channels of

general-purpose I/O, is dedicated to experiment control and data processing.

2.2. Excitation by Surface Film Heaters

Excitation of streamwise and spanwise instability modes is accomplished by either

of two mosaics of surface film heating elements mounted on the flow partition. Mosaic

I consists of 14 spanwise-uniform elements and two 16-element spanwise rows. Mosaic

II is comprised of four spanwise-uniform elements upstream of a single 32-element

spanwise row. Figure 2.2 is a schematic drawing of Mosaic II, the flow partition, and

the coordinate system. (In the present work, x, y, and z are the streamwise, cross-

stream, and spanwise coordinates, respectively; the corresponding velocity components

are u, v, and w.) The heating elements are mounted on a standard epoxy board

substrate. A thin film coating provides good heat conduction, corrosion protection, and

electrical insulation. Each heating element is wired through the epoxy board (using

through-hole plating) and the flow partition to a DC power amplifier. Thirty-two

channels of power amplifiers, each capable of continuously driving 10 A into a load of

2-4 ohms, are available. The unit's output is limited to 2.5 kW by the power supply.

Sixteen channels of power amplifiers can be directly driven by the laboratory computer

via a D/A interface. This allows input of arbitrary temporal waveforms to the heaters

without distortion, by compensating in software for the temperature dependence of the

heater resistance and for the quadratic dependence of Joulean dissipation on input

voltage. The input power to the heaters is given by E0 (z) + E(z, t), where E0 (z) is the

mean power.

The effect of heating the surface is essentially to introduce three-dimensional

vorticity perturbations into the flow partition's boundary layer by exploiting the

dependence of the viscosity on temperature (Liepmann, Brown & Nosenchuck 1982). It
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is important to recognize that small oscillations induced in the boundary layer amplify

or decay according to linear stability theory. Thus, forcing a shear layer from an

upstream boundary layer may not be effective if the induced waves decay appreciably

before reaching the trailing edge. Hence the forcing frequency should be within the

unstable (amplified) range of the boundary layer, the extent of which depends strongly

on the pressure gradient. By carefully extending the flow partition into the test section,

the streamwise pressure gradient can be tuned so that it becomes slightly adverse,

causing the flow partition boundary layer to become less stable and more receptive to

forcing.

The response of the flow to spanwise-uniform harmonic excitation over a range of

forcing frequencies is deduced from power spectra P(v) of the streamwise velocity 2.5

cm downstream of the flow partition and 1 cm above its centerline (on the high-speed

side). The free-stream velocities are U, - 30 cm/sec, and U2 = 10 cm/sec. These free-

stream velocities are used in all the present experiments with the exception of the

experiments described in §3.2. Several runs over a range of forcing frequencies Vf

were made. Figure 2.3 shows P(vf) as a function of vf. indicating the composite

receptivity of the high-speed-side boundary layer and the shear layer to spanwise-

uniform harmonic excitation. In connection with these measurements, it is important to

note that the hot-wire probe is operated at a 4% overheat ratio, which renders it

sensitive to temperature variations of the order of 0.10C. As shown in figure 2.3, the

probe does not respond to heater excitation at frequencies outside a relatively narrow

bandwidth, and hence it may be concluded that shear layer temperature fluctuations

associated with the surface heating are very small. Furthermore, the importance of

buoyancy effects in forced convection boundary layers may be evaluated (Schlichting

1968) based on the ratio y - Gr/(Re,*)2 where Gr is the local Grashoff number. For

the largest surface overheat, we compute -y < 103. Buoyancy effects can be neglected if

'<< I.
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Figure 2.4 shows cross-stream profiles of the dimensionless streamwise velocity

OW(i/) - [U(7) - U2 ]/AU, plotted as a function of the usual similarity variable

= (y - yo)/(x - x0), where U(i) is the mean velocity measured at a number of

streamwise stations, x0 is the virtual origin, and AU - UI - U2 . Here, Y0 (X) is the

cross-stream elevation at which U(x, y) = (Ut + U2 )/2, hereinafter defined as U,. The

flow is excited near the "natural" frequency and its first subharmonic (6 and 3 Hz,

respectively) using spanwise-uniform excitation from Mosaic I (corresponding velocity

profiles using Mosaic II are shown in figure 3.5 below). These data demonstrate that

the forced shear layer spreads more in the cross-stream direction than does the

unforced flow, in agreement with the findings of other investigators (e.g., Ho & Huang

* 1982).

In figures 2.5(a-c) we show power spectra P(v) of the the sticamwise velocity at

x = 10.2 cm (Reo - 216), 17.8 cm (Re0 = 663), and 25.4 cm (Reo = 1450), respectively,

for y = y0 . The Reynolds numbers at these x-stations are based on the momentum

thickness

e(x) -AU) 2 1 [U(x) - U2 ][U - U(x)]dy.

The spectra in figures 2.5(b,c) correspond to spanwise-uniform harmonic excitation at

vf - 6 and 3 Hz, respectively. The establishment of small-scale motion in free shear

flows is often connected with the existence of an inertial subrange in which the slope

of log P(v) versus log v is -5/3. At sufficiently high Reynolds numbers in a

homogeneous, stationary, and isotropic turbulent flow, the inertial subrange is the low

wave-number part of an equilibrium range of wave numbers in which negligible

viscous dissipation occurs (Batchelor 1953). Free shear flows, however, are not

homogeneous and, if forced, are not statistically stationary, so the extent of the inertial

subrange (which implies local isotropy) in laboratory flows is limited even at relatively

high Reynolds numbers (Champagne 1978). Furthermore, mixing transition does not
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depend on the existence of an inertial subrange, but rather on the presence of

10 turbulence or fine-scale random vortical structures, which can exist even at relatively

low Reynolds numbers. In fact, the characteristic time necessary for establishment of

an inertial subrange may lead to its appearance farther downstream from where mixing

* transition takes place. In the present experiments the inertial subrange at x - 25.4 cm

is estimated to be 5 Hz < v < 32 Hz (cf, Jimenez, Martinez-Val & Rebollo 1979), and the

logarithmic slope of the power spectrum within this subrange is approximately -5/3.

0 Ho & Huerre (1984) assert that typical transition Reynolds numbers in liquids fall in the

range 750 < Re < 1700.

2.3. Flow Visualization

Introduction of a controlled vorticity distribution into the boundary layer of the

flow partition by the surface heaters is accompanied by small localized density

0gradients in the adjacent fluid. The corresponding refractive index gradients are

exploited for flow visualization by means of a sensitive double-pass Schlieren system

(Fiedler, Nottmeyer, Wegener & Raghu 1985). This technique allows the effect of

forcing to be studied nonintrusively in planes parallel and normal to the flow span.

The Schlieren view can be thought of as a planar projection of streaklines of slightly

heated fluid elements. In the present investigation, the Schlieren view is in the

spanwise (x-z) plane of the mixing layer and consists of a 13.2-cm-diameter circle

centered in midspan. Because the flow is forced, two Schlieren views photographed at

the same phase relative to the excitation waveform and centered 7.6 cm and 15.2 cm

downstream of the trailing edge of the flow partition can be combined into a composite

showing the flow for I cm 5; x r 21.8 cm.

Photographs of the flow subjected to spanwise-uniform 5-Hz harmonic excitation

are shown in figure 2.6. The flow is from left to right. In the cross-stream (x-y) plane

(figure 2.6a), the flow is visualized by dye injected into the boundary layer of the low-

speed side at midspan. In the spanwise (x-z) plane, visualization was accomplished by
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the Schlieren technique described above. The two views have the same scale, begin (at

the left-hand side) 1 cm downstream of the flow partition, and were separately

photographed at the same phase relative to the zero crossings of the excitation signal.

At this excitation frequency, pairing of the primary vortices does not occur in the

streamwise domain shown here.

Although streaklines of colored and heated fluid elements do not necessarily mark

the presence of vorticity, they strongly suggest the formation of spanwise-coherent

vortices. It is important to recognize that the Schlieren view is a planar projection in

the cross-stream direction (i.e., a y-integration) from which depth information has been

lost. The Schlieren image of the primary vortex immediately downstream of the first

rollup (figure 2.6b) is characterized by sharp intensity gradients along its upstream and

downstream edges caused by the strong curvature of the thin layer of heated fluid that

is rolled into the vortex. The slight spanwise nonuniformity in the instantaneous

visualization shown in figure 2.6(b) also characterizes the ensemble-averaged flow.

Since the excitation waveform corresponding to figure 2.6(b) is spanwise uniform, these

results also suggest the formation of naturally occurring streamwise vortices in the braid

region, as well as the evolution of spanwise nonuniformities in the cores of the primary

vortices. The development of small-scale motion within the cores of the spanwise

vortices is apparent at the downstream end of the composite Schlieren view.

As noted by Landahl (private communication, 1990), streamwise streaks in

transitional flat-plate boundary layers have been identified as regions of high- or low-

speed velocity perturbations not necessarily associated with continuous concentrations of

streamwise vorticity. Nevertheless, because of the remarkable similarity between the

present flow visualization and three-dimensional cross-stream and streamwise vorticity

concentrations in the numerical simulations of Rogers & Moser (1989) and Buell &

Mansour (1989), we hereinafter refer to streamwise streaks in our Schlieren flow

visualization as streamwise vortices. We emphasize that reference to a "streamwise

0
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vortex" in the present work does not refer to a domain containing only streamwise

vorticity, nor does it imply that the axis of the vortex is parallel to the streamwise

direction.
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3. Evolution of Streamwise Vortices and Generation of Small-Scale Motion

3.1. Technical Background

The rate at which a reaction product is formed in the mixing layer between two

reacting streams can increase by an order of magnitude through a mixing transition

downstream of the flow partition (Roshko 1981). The small-scale three-dimensional

motion necessary for such mixing enhancement has been connected by Roshko to the

appearance of streamwise counter-rotating vortex pairs first observed by Miksad (1972)

and Brown & Roshko (1974). The streamwise vortices and the mechanisms by which

they lead to the generation of small-scale motion are the subjects of the present

experimental investigation.

Flow visualization of a chemically reacting liquid shear layer with a visible

reaction product reveals the evolution of spanwise nonuniformities along the primary

(spanwise) vortices (Breidenthal 1981). This nonuniformity (dubbed "wiggle") may be

described as being nominally sinuous, with considerable variation in spanwise

wavelength. As the sinuous structure is convected downstream, its amplitude grows

rapidly (apparently as a result of stretching by consecutive primary vortices), with no

appreciable change in spanwise wavelength. While there is no evidence that the

"wiggle" is associated with a spanwise instability of the primary vortex core, there is

no doubt that its appearance marks the formation of streamwise vortical structures. In

plan-view time-exposure photographs, these streamwise vortices appear as continuous

streaks, starting at approximately the streamwise onset of the wiggle, and have spanwise

spacings corresponding to the wiggle's undulations. Farther downstream, the streaks are

obscured by a marked increase in the (visible) reaction product.

Time-exposure photographs were also obtained by Konrad (1976) and Bernal &

Roshko (1986) over a large range of Reynolds number (Re) in a non-reactive gas mixing

layer facility. These authors found that the mean onset Re of the streaks increases

with the shear layer velocity ratio, and although they are not necessarily equally spaced

-17 -
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over a considerable distance downstream of the flow partition. their mean spanwise

spacing scales with the vorticity thickness at the streamwise location where they first

become visible. Similar observations were reported by Miksad (1972). Contour plots of

time-averaged streamwise velocity in a plan view at a fixed cross-stream elevation

(Jimenez 1983) closely resemble the streamwise streaks in the time-exposure

photographs. An important feature common to these observations is the preservation of

spatial coherence and spanwise spacings of the streaks, despite concomitant pairing of

the primary vortices.

Based on flow visualization and high-speed cinematography, Bernal (1981) and

Bernal & Roshko (1986) suggested that the counter-rotating streamwise vortex pairs in

the plane mixing layer are part of a vortex that continuously loops back and forth in

the braid region between adjacent spanwise vortices. The mean spanwise spacing of

the streamwise vortices appears to increase somewhat as the vortices are convected

downstream, although at a much smaller rate than the rate of change in the cross-stream

(or streamwise) dimension of the primary vortices. A somewhat different view

concerning the structure of the streamwise vortices was proposed by Hussain (1983).

Unlike the model of Bernal & Roshko, Hussain's model emphasizes that the braid region

is comprised of slender discrete vortices (dubbed "ribs") randomly displaced with

respect to each other in directions normal to their axes.

A number of numerical and analytical studies have shown that the streamwise

vortical structures can result from nonuniformities of the spanwise vorticity in the

braid region between the primary vortices. Lin & Corcos (1984) showed that a weak

spanwise-periodic variation of streamwise vorticity in a uniform straining flow (as

between two consecutive spanwise vortices) can evolve into concentrated round

streamwise vortices. These findings were further confirmed by Ashurst & Meiburg

(1988) via simulations based on inviscid vortex dynamics. The direct Navier-Stokes

simulations of Metcalfe, Orszag, Brachet. Menon & Riley (1987) show that spanwise
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instability modes triggered by upstream nonuniformities in the spanwise vorticity are

convected with the flow, grow at rates similar to those of the two-dimensional modes,

and lead to the formation of pairs of counter-rotating streamwise vortices in the braid

region. Metcalfe et al. also remark that pairing of the primary vortices may inhibit the

three-dimensional instability, while suppression of pairing may drive the three-

dimensional modes to turbulent-like states.

Experimental evidence suggests that the streamwise vortices tend to lock onto small

geometric details (imperfections in the flow partition, orientation of screens, etc.) in the

experimental apparatus (Bernal 1981. Jimenez 1983). Lasheras, Cho & Maxworthy

(1986) showed that small vortex-generating elements mounted on the flow partition could

move the origin of these vortices considerably upstream; in the absence of these devices

and by careful removal of flow disturbances, the origin could be displaced significantly

downstream. In related flow visualization experiments, Lasheras & Choi (1988) studied

the evolution of a spanwise-periodic pattern of streamwise vortices produced by flow

partitions with corrugated and indented trailing edges. Recent experiments in a plane

mixing layer excited by a spanwise array of surface film heaters conclusively

demonstrate the ease with which a nearly arbitrary spanwise distribution of streamwise

vortices can be generated (Nygaard 1987; Fiedler. Glezer & Wygnanski 1988).

An important feature of the time-exposure photographs of Bernal & Roshko (1986)

is the gradual disappearance of the streamwise streaks downstream of where they

exhibit remarkable spanwise coherence. Spanwise plots of time-averaged streamwise

velocity at a number of streamwise stations show a slow streamwise increase of the

characteristic spanwise spacing, indicating either loss of spanwise coherence or

disappearance of streamwise structures (Huang & Ho 1990). Bernal & Roshko further

report that, in the region where time-exposure photographs no longer show the presence

of streaks, single snapshots show streamwise vortices having mean spanwise spacing

nominally larger than that of the upstream streaks. Furthermore, the spanwise locations
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of these streamwise vortices vary with downstream distance in a manner clearly

unrelated to (fixed) structural features of the experimental apparatus.

It is clear that time-invariant spanwise vorticity nonuniformities due to

irregularities of the experimental apparatus upstream of the trailing edge of the flow

partition continuously influence the vortex sheet, which subsequently becomes part of

the spanwise vortices and the braid region. Although spanwise vorticity

nonuniformities within the braid region lead to the formation of streamwise vortices,

experimental and numerical evidence suggests that under some conditions the same

disturbances cause little or no distortion of the primary vortices. In the vortex

simulations of Ashurst & Meiburg (1988), an initial spanwise-periodic perturbation leads

to the formation of streamwise vortices in the braid region but has little effect on the

primary vortices themselves. An out-of-phase waviness of the cores of the primary

vortices, observed in the early stages of the numerical simulations of Ashurst &

Meiburg, is also observed downstream in the experiments of Lasheras & Choi (1988).

In both of these investigations, the waviness of the primary vortices seems to decay

downstream due to the continuous rotation of their cores. We further note that in the

experiments of Lasheras & Choi, streamwise-continuous vortex pairs appear

immediately downstream of a flow partition with an indented trailing edge, considerably

upstream of the first rollup of the primary vortices. These findings suggest that

formation of streamwise vortices in close proximity to the flow partition is mainly the

result of upstream nonuniformities in either the experimental apparatus or the flow

partition's boundary layers. On the other hand, the observations of Bernal & Roshko

(1986) regarding the appearance of streamwise vortices uninfluenced by upstream

conditions indicate that, far enough downstream of the flow partition, streamwise

vortices may result from an instability of the primary vortices. A spanwise core

instability of the primary vortices is a viable mechanism because it is accompanied by

distortion of the strain field in the braid region.
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Pierrehumbert & Widnall (1982) identified two spanwise instability modes of the

primary vortices in their analysis of a shear layer modeled by an array of Stuart

vortices. The first mode, referred to as "translative instability," is spanwise and

streamwise periodic. The streamwise wavelength is that of the two-dimensional flow.

The most unstable translative disturbance has a spanwise wavelength equal to two-

thirds the spacing of the undisturbed vortices, although disturbances amplify within a

broad band of wavelengths. The authors suggest that the translative instability leads to

the formation of streamwise vortices observed in the experiments of Breidenthal (1981).

Corcos & Lin (1984) assert that rollup of spanwise vorticity into a streamwise-periodic

array of vortices gives rise to a translative core instability that allows spanwise

perturbations to grow in such a way that the spanwise vortices are identically distorted.

Pierrehumbert (1986) later showed that elliptic two-dimensional vortices are unstable to

three-dimensional perturbations, with spanwise wavelengths much smaller than the

characteristic vortex core dimension. Pierrehumbert proposed this short-wave

instability as a mechanism for the direct transfer of energy from the spanwise vortices

into fine-scale turbulence. The second instability mode discussed by Pierrehumbert &

Widnall corresponds to spanwise-localized pairing of the primary vortices. This

instability mode has a streamwise wavelength twice that of the two-dimensional base

flow and, in contrast to the translative instability, has a short spanwise wavelength

cutoff. Experimental evidence that the primary vortices are subject to a core instability

having a spanwise wavelength longer than the streamwise (Kelvin-Helmholtz)

wavelength is also found in the work of Chandrsuda, Mehta, Weir & Bradshaw (1978)

and Browand & Troutt (1980. 1985). Some aspects of the core instability have been

studied recently by Nygaard & Glezer (1990. 1992).

This section of the present report focuses on the evolution of streamwise vortical

structures resulting from spanwise-periodic time-harmonic disturbances upstream of the

trailing edge of the flow partition. Although the findings of Breidenthal (1981) and
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Bernal & Roshko (1986) indicate that these streamwise vortices play a crucial role in the

mixing transition of the plane shear layer, the mechanism by which small-scale motions

necessary for such transition are generated has not been studied. The present

investigation is also concerned with unanswered questions regarding details of the

formation process of the streamwise vortices, their spanwise spacings, their effect on the

two-dimensional base flow, and their interaction with the spanwise vortices.

3.2. Formation of the Streamwise Vortices

Several experimental investigations of plane mixing layers have demonstrated that

streamwise vortices in the braid region can be triggered by spanwise-nonuniform

excitation using either passive (e.g., Lasheras & Choi 1988 and Bell & Mehta 1989) or

active (Nygaard & Glezer 1989) devices mounted on the flow partition. Because

evolution of the streamwise vortical structures appears to be phase-locked to the two-

dimensional instability of the base flow, an important attribute of active devices such as

our surface heaters is that they allow for streamwise and spanwise instability modes to

be excited relatively independently. Spanwise-uniform time-harmonic excitation

provides a powerful tool for the manipulation of some streamwise instability modes,

with dramatic global effects on the flow. In particular, forcing at the natural (most

unstable) frequency produces a region downstream of the flow partition in which the

passage frequency of the primary vortices is equal to the forcing frequency and pairing

is inhibited (e.g., Roberts 1985). Thus, the evolution of the streamwise vortices can be

studied phase-locked to the excitation waveform and in the absence of interactions

between the primary vortices.

In a previous investigation, which was supported by AFOSR Grant 86-0324, we

studied the effect of spanwise-nonuniform harmonic excitation.

E(zt) . A(z)sin(wft)

on the evolution of the streamwise vortices at relatively low free-stream velocities (18
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and 6 cm/sec) (Nygaard 1987; Fiedler et al. 1988). The streamwise vortices form at

spanwise locations corresponding to minima of A(z) and, at least close to the flow

partition, resemble lambda vortices in transitional flat-plate boundary layers (e.g.. Saric

& Thomas 1983). Within the spanwise resolution of the heating mosaic, the shape of

the streamwise vortices was almost invariant with respect to different spanwise-periodic

waveforms, A(z), having the same spanwise wavelength, Xz .

In this subsection we discuss the early stages in the formation of the streamwise

vortices. The interaction between the streamwise and spanwise vortices and the

subsequent generation of small-scale motion necessary for mixing transition are

described in §§3.3-3.5. In both experiments, pairing of the spanwise vortices is

inhibited by choosing Pf to be approximately equal to the natural frequency of the

mixing layer. Measurements of the streamwise velocity component are obtained using

the hot-wire rake described in §2.1. The length of the velocity time series at each

measurement point corresponds to 400 cycles of the harmonic excitation. The data are

sampled at 128 vf .

The evolution of a spanwise-isolated streamwise vortex was studied by using

heating Mosaic I to synthesize a steady 16-element discretization of Eo(z) =

I - cos(2irz/), where X, is equal to the width of 10 heating elements. Because phase

jitter in the passage frequency of the spanwise vortices at the measurement station

decreases with UC, the velocities of the two streams are reduced to 25 and 9 cm/sec and

the corresponding excitation frequency is vf = 3.7 Hz. During excitation of the

spanwise-uniform wave train, the flow is illuminated in the x-z plane by a strobe

triggered at a phase delay relative to the zero crossings of E(z,t), and photographed

using the Schlieren technique described in §2.3. The flow in the y-z plane was

visualized by means of dye injection on the low-speed side and was photographed

separately at the same phase relative to the zero crossings of E(z,t). Figure 3.1 is a

composite of eight pairs of side (x-y) and span (x-z) views taken at equal time intervals

...0nmmn m a mn l ml~ll llI I ma • I~ll lll l
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during the excitation period. The field of view is between 2.5 and 12.4 cm

downstream of the flow partition.

Figure 3.1(c) suggests that spanwise-nonuniform vorticity concentrations [at the

upstream (left) end of the (x-y) view in figure 3.1a]. referred to below as V1 . first

appear on the crest of the two-dimensional wave prior to rollup of the vortex sheet into

a primary vortex. Owing to the spanwise-nonuniform excitation, V, develops an

upstream bend about its middle as it is advected downstream. The streamwise vortices

formed during previous cycles of the excitation wave train are observed at the center

and downstream end of the Schlieren view in figure 3.1(a) (referred to below as V2 and

V 3. respectively). In figures 3.1(b-d), the legs of V2 appear to be connected to V1 and

form a nearly quadrilateral vortex structure embedded in the deformed vortex sheet,

marked by dye in the corresponding idc view. The downstream edge of the

quadrilateral structure lies Ca the high-speed side of a spanwise vortex, while the

upstream edge is deforn1 ed and s- Ptched by rollup of the following spanwise vortex.

As a result of the stretching of V1 and rollup of the spanwise vortex sheet, a new

hairpin eddy-like structure forms near the region of maximum curvature of the

upstream bend (figure 3.1e). Previous experimental work on the formation of

streamwise vortices in the braid region emphasizes that streamwise vortices begin to

form near a stagnation point (in a reference frame moving with U,) between two

adjacent spanwise vortices and are subsequently stretched continuously in the upstream

and downstream directions (Lasheras et al. 1986; Lasheras & Choi 1988). Figure 3.1

suggests that variations in the streamwise strain field due to the Kelvin-Helmholtz

instability lead to formation of streamwise vortices even before rollup of the primary

vortices is completed. Streamwise vortices appear near the high-speed edge of a

primary vortex during its rollup, and are then continuously stretched in the upstream

direction toward the subsequent spanwise vortex. Consistent with the numerical

simulations of Buell & Mansour (1989), we note that, at least within the streamwise

domain shown here, neither the heads nor legs of the hairpin eddies appear to be

ingested into the spanwise vortices.



-26-

The streamwise location at which streamwise vortices first appear is probably

related to the amplitude of the upstream disturbances leading to their formation. The

appearance of streamwise vortices before rollup of the primary vortices is reported by

Huang & Ho (1990), for an unforced plane mixing layer at relatively high Reynolds

number, and is also evident in the experiments of Lasheras & Choi (1988), where

streamwise counter-rotating vortex pairs appear immediately downstream of a flow

partition with an indented trailing edge. While the Lin-Corcos mechanism for the

formation of streamwise vortices (Lin & Corcos 1984) may be valid upstream of the

rollup of primary vortices, we note that streamwise vorticity can also develop in a

spanwise- and streamwise-uniform base flow. An example is the formation of

Langmuir circulations in the surface layers of natural waters (Leibovich 1983). These

counter-rotating vortex pairs form when the wind blows over water; their axes are

nearly parallel to the wind and their crosswind (i.e., spanwise) spacing scales with the

vorticity thickness.

While there is no question that spanwise-nonuniform excitation alters the

nominally two-dimensional base flow, the extraction of a three-dimensional vortical

structure from data of a single velocity component is not a trivial matter. Nevertheless,

such a three-dimensional structure would be invaluable as a first step in understanding

the dynamics of the flow. Such a vortical structure could be distinguished from the

rest of the flow by the high intensity of the rms velocity fluctuations. u'(x,t). A scheme

by which u'(xt) is computed relative to each individual realization and then ensemble-

averaged ((u't(xt))) has been implemented (Glezer, Katz & Wygnanski 1989). Unlike the

conventional (u'). the ensemble-averaged ("true") rms velocity fluctuations, (u't), are not

prone to spurious contributions from low-frequency variations of the flow relative to its

mean (e.g.. velocity fluctuations outside the mixing layer induced by passage of

spanwise vortices).

The "true" rms velocity fluctuations, phase-averaged over the excitation period.

are computed from detailed measurements of the streamwise velocity in y-z planes.
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The data shown in figure 3.2 are measured at x = 15 cm, where Re0(,) - 570 for the

harmonically excited flow. The domain of measurements is rectangular (6 cm x 5.2 cm

in the y- and z-directions, respectively), and the measurement points are equally spaced

(2mm apart) in each coordinate. The surface, (u't) - 0.085 cm/sec in y-z-t coordinates,

is shown during two periods of the spanwise-uniform and spanwise-nonuniform

excitation waveforms. Note that in this figure, as in all phase-locked plots below, time

increases to the left in order to facilitate comparison with the Schlieren and dye views in

which the vortical structures are advected to the right. Although these are not surfaces of

constant vorticity, they seem to effectively capture three-dimensional features of the

streamwise vortices that are similar to the numerical results of Metcalfe et al. (1987)

and Buell & Mansour (1989). Our data demonstrate that the streamwise vortex resulting

from spanwise-nonuniform excitation induces substantial spanwise variations of (u',)

within the primary vortex and in the braid region. Of particular note is the expansion

of turbulent interfaces, probably corresponding to small-scale motion on the high-speed

edge of the primary vortex (figure 3.2b). These modifications of the nominally two-

dimensional base flow are further discussed in §3.4.

3.3. The Effect of Spanwise Wavelength

In figure 3.3. we show the effect of X, on the ensuing streamwise vortices at

higher free-stream velocities (30 and 10 cm/sec) and excitation frequency (vf - 5 Hz)

than discussed in §3.2. The amplitude of the excitation waveform, A(z), is piecewise-

continuous and spanwise-periodic with wavelength, Xz . To define the waveform, we let

z - z0 + Xs. where zo is an arbitrary reference and 0 < s < 1. Then in each

wavelength, A(z) is given by A(z) - AH for 0 < s < sj, A(z) - AL for s !9 s K s2 , and

A(z) - AH for s2 < s 1. In the present experiments, Xz is taken as the widths of 2, 4,

8, and 16 elements of Mosaic II (figures 3.3a,b,c,d, respectively), (S2 - sI ) is equal to

the width of one heating element, and AL - 0.3 AH. Because of its deep minima, this
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waveform is effective in minimizing spanwise jitter in the locations of the ensuing

streamwise vortices. All Schlieren views in figure 3.3 were obtained at the same phase

relative to the harmonic wave train.

As mentioned above, the forced streamwise vortical structures bear considerable

resemblance to lambda vortices in a transitional flat-plate boundary layer. In the

present experiments, the included angle A between the legs of the streamwise vortices

decreases with decreasing X,. For relatively long X, (e.g., figure 3.3b), A is unchanged

because spanwise interaction among streamwise vortices is reduced. The existence of

spanwise-isolated streamwise vortices for )1 > XKH (figure 3.3a) indicates that these

structures are not part of a single vortex that continuously loops back and forth

between adjacent spanwise vortices, as conjectured by Bernal & Roshko (1986). Figure

3.3 further suggests that, for a given excitation frequency, virtually any spanwise

wavelength synthesizable by the heating mosaic can be excited and can lead to the

formation of streamwise vortical structures. This is supported by the flow visualization

study of Lasheras & Choi (1988), where the average spanwise spacing of the streamwise

vortices (their figure 25a) appears to be much smaller tnan the spanwise wavelength of

their corrugated flow partition.

An important aspect of spanwise-nonuniform excitation at long XZ (typically longer

than XKH) is shown in figures 3.3(a,b). In figure 3.3(a), the central spanwise vortex

deforms at midspan and develops an upstream bend. As shown in the experiments of

Lazheras & Choi (1988). the three-dimensional alignment of the approximately

streamwise vortices in the braid region is determined by the orientation of the strain

field induced by the primary vortices. The spanwise undulations of the primary

vortices modify the strain field in the braid region and consequently induce a

significant increase in A. Farther downstream, the upstream bend in the spanwise

vortex (on the right) is increased, and smaller-scale vortical tubes appear to be formed

near the head of the streamwise vortex. When X. is reduced (figure 3.3b), the first

0
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spanwise vortex downstream of the flow partition (on the left) develops spanwise

undulations having the wavelength of the excitation. As in figure 3.3(a). the forced

streamwise vortices are located at the upstream bends of these undulations. and A

increases with downstream distance.

Of particular note are additional vortex tubes that appear along the legs of the

streamwise vortex in the braid region between the spanwise vortices in the center and

left of figure 3.3(b). These vortex tubes are probably associated with rollup of the

streamwise vortices. Such a mechanism is discussed by Pullin & Jacobs (1986) in their

numerical study of the nonlinear evolution of an array of inviscid counter-rotating

vortex pairs subjected to an applied stretching strain field. This leads to rollup of

multiple "secondary" streamwise vortices near each of the legs of a "primary"

streamwise vortex. All secondary streamwise vortices associated with a given primary

leg have the same sense of rotation. Lasheras et al. (1986) studied a streamwise vortex

forced by a small hemisphere mounted on the flow partition of a plane mixing layer

and proposed an induction mechanism for its spanwise spreading. The appearance of

additional vortical tubes in the experiments of Lasheras et al. is clearly connected with

undulation of the spanwise vortex. This deformation significantly mxtifies the vorticity

and strain distributions in the braid region and, hence, may trigger the secondary

instability of Pullin & Jacobs. In fact, forced streamwise vortices show little spanwise

spreading when the spanwise vorticity remains approximately two dimensional (figures

3.3c,d). An upstream bend of the spanwise vortex is also apparent in the photographs

of Lasheras et al. (their figure 15. corresponding to figure 2 3b here).

The undulations of the spanwise vortices result from an instability of their cores.

Some preliminary results regarding this core instability have been obtained by Nygaard

& Glezer (1990). It appears that, as a result of this instability, the primary vortices

undergo spanwise deformation, the wavelength of which typically exceeds XKH. and

induce secondary vortical structures through deformation of the strain field in the braid

0



-32-

region. Although the core instabilitj is apparent in a number of previous experiments

(e.g., Chandrsuda et al. 1978, Browand & Troutt 1985, and Lasheras & Choi 1988), no

previous investigation has established its connection to the formation of streamwise

vortices in the braid region.

3.4. Modification of the Two-Dimensional Base Flow by the Streamwise Vortices

The response of the flow to spanwise-nonuniform excitation may be evaluated

from ensemble-averaged [phase-locked to E(zt)] time series of the streamwise velocity

perturbation,

(Upert(X-t)) - (u(xt)) - U(x)

where U(x) is the mean flow velocity computed from the ensemble-averaged data,

TI

U(x) (u(x,t))dt ,

and

Tr - l/Vf

0 is the temporal period of E(z, t).

In what follows, we study the effect of spanwise-nonuniform excitation on the

nominally two-dimensional base flow. The spanwise wavelength of the excitation

waveform E(z,t) is synthesized by four-element groups of Mosaic II (k, - 2.54 cm). An

instantaneous Schlieren visualization of the forced flow is shown in figure 3.3(c).

The response of the mixing layer to spanwise-uniform and spanwise-nonuniform

excitation close to the trailing edge of the flow partition is shown in figures 3.4(a) and

3.4(b), respectively, using contour plots of (up, t(z.t)) measured at x - 5.1 cm and

y Y0 (x). The duration of the ensemble-averaged time series is 4Tf. and the data are

taken equidistantly (2.5 mm apart) along the span. Shaded regions (indicated by dots)

correspond to (Upert(Zt)) < 0. [Despite some spanwise nonuniformity (see also figure
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2.6b), the base flow is quite two-dimensional.] Even though the contour plots in figure

3.4 are planar cross sections of a three-dimensional flow at a fixed cross-stream

elevation, they contain useful structural information. The dark spanwise bands in

figure 3.4(a) represent times of most rapid velocity increase (or decrease) and can be

associated with phase fronts of the (excited) Kelvin-Helmholtz instability. Note that the

y-elevation of the probe is such that (upert(zt)) < 0 during passage of the (high-speed)

crest of the two-dimensional instability wave.

At this streamwise station, the primary vortex rollup has just begun (figure 2.6a),

and the vortical structure excited by spanwise-nonuniform heating already has an

upstream bend about its middle as it is advected downstream (e.g., figure 3.1c). The

induced velocity fluctuations, (upert(z.t)), in figure 3.4(b) are consistent with these

observations. As discussed in §3.3, the upstream bend of the streamwise vortical

structure first appears on the (high-speed) crest of the two-dimensional wave lying

above the cross-stream elevation of the probe at y - y (x) (i.e.. for (upet (z,t)) < 0 in

figure 3.4a). Because the streamwise vortex is advected in a shearing flow, its induced

velocity field acts to move fluid down (or up) from higher (or lower) cross-stream

elevations. Hence. the streamwise velocity at a given y-elevation may be higher or

lower than it would be in the absence of spanwise-nonuniform excitation, and the

presence of the streamwise vortices is marked by local minima or maxima of (uPert(z~t)).

For example, higher-momentum fluid from the high-speed side is moved down between

the counter-rotating legs of a streamwise vortex and, similarly, lower-momentum fluid

from the low-speed side is moved up between the legs of adjacent streamwise vortices.

This results in alternating local maxima and minima of velocity perturbations within the

negative (shaded) regions. The strength of velocity perturbations induced by the

streamwise vortices is time-periodic because these vortices, inclined in the streamwise

direction as they are advected past the measurement station, are themselves time-

periodic.

0
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Even though spanwise-nonuniform excitation has a marked effect on the phase-

averaged data close to the flow partition (cf. figure 3.4b), its effect on the approximately

two-dimensional mean base flow is felt only farther downstream, as can be deduced

from cross-stream profiles of the temporal mean of the streamwise velocity. These

profiles are shown in figure 3.5(a) for spanwise-uniform excitation and figures 3.5(b,c)

for spanwise-nonuniform excitation. The velocity profiles in figures 3.5(b) and 3.5(c)

are measured at spanwise stations corresponding to passage of the head of a streamwise

vortex (i.e., its downstream tip) and halfway (X,/2) between heads of two adjacent

streamwise vortices (hereinafter referred to as the "tail"), respectively. The velocity

profiles in figure 3.5(a) are similar to those found in other investigations of mixing

layers subjected to harinonic forcing by other means (e.g., Weisbrot 1984). Of

particular note ia. .,e development of a slight velocity overshoot (exceeding U1 ) at the

high-speed c-Je, reported earlier by Gaster, Kit & Wygnanski (1985) for a mechanically

forced flow. In addition to a velocity overshoot at the high-speed side, the

rn ,asurements of Weisbrot reveal a velocity undershoot at the low-speed side.

To the extent that streamwise derivatives of the time-averaged cross-stream

velocity component in a two-dimensional mixing layer are -rmall compared to aU/oy

(e.g., Townsend 1980). the mean spanwise vorticity, &I.. of the flow will be dominated

by the latter. Hence, the velocity overshoot evident in figure 3.5(a) may mark the

appearance of (small) negative values of 9, on the high- and low-speed edges of the

mixing layer. Although negative spanwise vorticity may also be present in the

unforced flow, its mean magnitude is likely to be considerably smaller owing to

substantial variation among the cross-stream widths of the primary vortices. The

phase-averaged measurements of Weisbrot (1984) indicate the existence of small

vorticity peaks at the high- and low-speed edges of the primary vortices; however, it is

not clear that these peaks are negative. On the other hand, careful measurements of
i

spanwise vorticity in an unforced mixing layer reveal negative concentrations of

0
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spanwise vorticity apparently originating from the boundary layer of the low-speed

stream on the flow partition (Lang 1985). We also note that streamwise velocity

overshoot (or undershoot) on the high-speed (or low-speed) edge of the mixing layer may

lead to a significant diminution in the momentum thickness, even though the width of

the mixing layer (as measured by the presence of vorticity) does not necessarily

decrease.

When the excitation waveform is spanwise-nonuniform. the mean velocity profiles

significantly distort downstream. Because the approximately streamwise vortices in the

braid region are inclined in the x-y plane, the profiles in figures 3.5(b,c) are most

strongly affected near their high- and low-speed edges, respectively. Furthermore,

since the streamwise vortical structures have their origin in hairpin eddies that form on

the high-speed side of the spanwise vortices (figure 3.1f), the mean profiles are first

distorted near the high-speed edge. Because "localized" inflection points of the

distorted mean velocity profiles mark regions of large shear, their appearance has

important consequences from the standpoint of mixing transition. These regions are

associated with thin internal shear layers, in which the growth rate of small

disturbances is proportional to the local rate of strain and inversely proportional to the

shear layer thickness (Landahl & Mollo-Christensen 1986). The rapid amplification of

these small-scale disturbances is similar to the inviscid instability observed by

Klebanoff, Tidstrom & Sargent (1%2) in a transitional boundary layer.

Distortion of the streamwise velocity profiles due to spanwise-nonuniform

excitation is not restricted to the cross-stream (x-y) plane. Surfaces of mean streamwise

velocity are also deformed in the y-z plane (figure 3.6 for x - 10.2 cm, and figure 3.70
for x = 17.8 cm). Spanwise-uniform excitation results in a reasonably two-dimensional

distribution of the mean streamwise velocity at x = 10.2 cm, while at x = 17.8 cm, some

nonuniformity associated with "natural" evolution of three-dimensional flow structures

is developed. The disturbances leading to these flow structures are most likely
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associated with imperfections in the experimental apparatus. The respective Reynolds

numbers based on the spanwise-averaged momentum thickness, e(x), are 340 and 570.

When the excitation waveform is spanwise nonuniform, the temporal mean streamwise

velocity distribution develops trough- and ridge-like distortions aligned in the y-

direction and alternating in the z-direction with the spanwise wavelength of the

excitation waveform. Distortion of the mean streamwise velocity distribution results in

a substantial increase in O(x) at these two streamwise locations and, consequently, in an

increase in the respective values of Ree(x) (490 and 950). Although this distortion is

strongest along the high- and low-speed edges of the mixing layer (i.e., at the heads and

tails of the streamwise vortices), it is evident throughout the entire velocity surface and

is accompanied by approximately spanwise-periodic inflection points in spanwise

profiles of the mean streamwise velocity at fixed y-elevations. As does the distortion of

the cross-stream profiles, these inflection points suggest the formation of local maxima

of spanwise strain rate and rapid amplification of small disturbances. The breakdown

of these rapidly amplifying structures leads to the generation of small-scale turbulence.

The formation of localized shear layers by interaction among the streamwise and

primary vortices is also suggested by Corcos (1988). Such shear layers may be formed

by the wrapping of spanwise vortex lines around cores of streamwise vortices.

The role of strearnwise vortices in the formation of spanwise concentrations of

small-scale flow structures is demonstrated in spanwise contour plots of velocity power

spectra, P(zv), (figure 3.8 at x - 10.2 cm, and figure 3.9 at x - 17.8 cm). These data

are plotted at y-elevations of the inflection points on the high- and low-speed edges of

the mean cross-stream velocity profiles that result from spanwise-nonuniform excitation

(cf. figures 3.5b,c). Corresponding spectra for spanwise-uniform harmonic excitation

are shown for comparison in figures 3.8(a,c) and 3.9(a,c). The spanwise profile of the

mean streamwise velocity at the y-elevation of each contour plot is shown to the left.

0I
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Bands of high-frequency spectral components that are approximately spanwise

0 periodic form when the flow is subjected to spanwise-nonuniform excitation. These

bands are centered around spanwise extrema of U, and the sharp spanwise gradients

along their edges approximately coincide with spanwise inflection points of U (figures

3.8b,d and 3.9b,d). Note that the spanwise positions of the bands near the high- and

low-speed edges of the mixing layer are offset by X,/2, as are the heads and tails of the

streamwise vortices. The formation of these bands near the inflection points suggests

* that the inflection points play an important role in the generation of high-frequency

small-scale motion. Furthermore, at the spanwise locations of the bands, the amplitude

of the spectral components at the excitation frequency vf and its first harmonic, 2 vf,

undergo considerable attenuation between x - 10.2 cm and 17.8 cm, indicating

(spanwise-nonuniform) energy transfer from low to high frequencies. This process is

accompanied by a substantial reduction in the amplitude of higher harmonics of the

excitation frequency. A similar trend is apparent in the streamwise variation of the

power spectra of streamwise velocity in an unforced mixing layer undergoing small-

scale transition (Huang & Ho 1990).

Cross-stream integrated amplitudes of the spectral components of (upert(xt)) at the

forcing frequency and its first harmonic, denoted by A, and A2 , respectively, are

shown in figure 3.10 for spanwise-uniform and spanwise-nonuniform excitation (cf,

figures 3.5a-c). To the extent that the local slope of each curve is a measure of local

streamwise amplification rate (cf, e.g., Gaster et al. 1985), the value of x at which the

slope vanishes is the location of zero spatial amplification. When the flow is excited by

a spanwise-uniform wave train. A l increases somewhat between x - 5.1 cm and 7.6

cm, and then remains almost unchanged until x - 15.2 cm. where it begins to decay

(except possibly at the head location). The second harmonic content of (upet(x.t)) for

the case of spanwise-uniform excitation is indicative of nonlinear behavior of two-

dimensional spanwise vortices. It is remarkable that when the flow is subjected to
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spanwise-nonuniform excitation, streamwise distributions of A, and A2 at spanwise

locations of the heads and tails of the streamwise vortices are quite similar to

corresponding amplitude distributions under spanwise-uniform excitation. This suggests

that at least within the streamwise domain considered here, the evolution of the

nominally two-dimensional spanwise vortices is almost unaffected by spanwise-

nonuniform excitation and the accompanying formation of the streamwise vortices. In

view of this finding, we conclude that attenuation of spectral components at the forcing

frequency and its higher harmonics is limited to the neighborhood of spanwise

inflection points induced by spanwise-nonuniform excitation (figures 3.8 and 3.9). The

direct numerical simulations of Riley, Mourad, Moser & Rogers (1988) show that two-

dimensional instability modes of the plane mixing layer also appear to be unaffected by

three-dimensional disturbances. We note that these conclusions may not be valid if Xz

is long enough to excite the core instability (cf. figures 3.3a-b).

3.5. The Evolution of Small-Scale Motion

The phase-averaged flow structure resulting from spanwise-nonuniform excitation

is studied in detail in constant-x planes at x - 10.2 cm and 17.8 cm. These streamwise

locations are chosen because Schlieren visualization and preliminary measurements

indicated that the streamwise vortices are fully developed at x - 10.2 cm and, between

this station and x - 17.8 cm, three-dimensionality within the spanwise vortices and in

the braid region increases substantially. The data are taken on a rectangular grid

measuring 8.9 cm and 5.9 cm in the spanwise and cross-stream directions, respectively.

Phase-averaged turbulent fluctuations of the streamwise velocity component,

(u't(xt)). are calculated from instantaneous velocity records (Glezer et al. 1989). This

technique uses a (digital) high-pass filter and, as discussed in §3.2, is extremely

effective in capturing small-scale streamwise motions associated with passage of large

coherent vortical structures at the measurement station. Turbulent structures can also
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be identified by an intermittency, y,(x,t), defined in terms of the presence or absence of

small-scale fluctuations in space or time. In the present experiments, the temporal

intermittency is computed pointwise from the streamwise velocity, u(xt). using the

procedure of Glezer & Coles (1990). The local rms deviation, c(x,t). from a least-

squares straight-line fit of three data points in the time series u(x,t) is computed for the

middle point and compared with a prescribed threshold. If c(x,t) exceeds the threshold,

the flow is called turbulent and the intermittency is set to unity at the middle point;

otherwise, it is set to zero The result is a time series. y(x,t), of ones and zeros. The

ensemble-averaged intermittency. (,(x.t)). varies between zero and one and may be

thought of as a measure of the probability that the flow is turbulent.

Figures 3.11(a-b), at x -10.2 cm. and figures 3.11(c-d), at x =17.8 cm, show

contour plots of (u' t ) and (y) in the y-t plane for spanwise-uniform excitation. At the

measurement station, passage of the spanwise vortex can be recognized by

concentrations of small-scale velocity fluctuations. Whereas at x - 10.2 cm. u' t ) is

mostly concentrated in a relatively small region closer to the low-speed edge of the

vortex (figure 3.1 Ia), at x - 17.8 cm (figure 3.1 Ic) the cross-stream distribution of (u', )

within the spanwise vortex is considerably broader and has a lower maximum. The

cross-stream intermittency distribution during passage of the spanwise vortex at

x - 10.2 cm (figure 3.1 lb) has two maxima, upstream and downstream, which appear to

be associated with entrainment of irrotational fluid from the low- and high-speed

streams, respectively. Three equally spaced, weak intermittency maxima in the braid

region correspond to higher harmonics in the velocity spectra (cf, figure 3.8a) and can

be ccnnected with a Kelvin-Helmoltz instability of the material interface separating the

high- and low-speed fluid. Similar structures are also apparent in the numerical results

of Lummer discussed by Fiedler (1988). It is noteworthy that, unlike (f), corresponding

levels of (u', ) in the braid region are considerably lower than within the spanwise

vortices. This is because the intermittency data are sensitive to the presence of
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turbulent interfaces and are not a measure of turbulence intensity. As with (u't), the

cross-stream distribution of (Y) at x - 17.8 cm (figure 3.1ld) is broader and has a single

peak (cf, Oster & Wygnanski 1982).

That the phase-averaged structure of the base flow in the y-t plane is substantially

modified by spanwise-nonuniform excitation is demonstrated in contour plots of (u', )

and (-y) at spanwise locations corresponding to heads and tails of the streamwise vortices

(figures 3.12 and 3.13, respectively). For x - 10.2 cm, at the spanwise locations of

heads of the streamwise vortices, regions of small-scale motion progressively

contaminate toward the high-speed side (figures 3.12a,b). Farther downstream, the

heads of the streamwise vortices do not "wrap" around the spanwise vortices (as

* suggested, for example, by the sketches of Lasheras & Choi 1988) but protrude in the

downstream direction toward the braid region (figures 3.12c,d). As observed by Bernal

& Roshko (1986), the streamwise vortices tend to move away from the spanwise

vortices, i.e., toward the high- and low-speed streams. Hence, the heads (or tails) of the

streamwise vortices are advected faster (or slower) than the spanwise vortices and can

protrude into the downstream (or upstream) braid regions. Similar behavior is evident

in the direct numerical simulation of a temporally developing mixing layer (Rogers &

Moser 1989) after pairing of the spanwise vortices.

The present results further indicate that the streamwise vortices may form closed

toroidal "ribs" around the primary vortices, which become part of "cat's-eye"-like

structures (discussed in more detail below). For x - 10.2 cm, at spanwise locations of

the tails, regions of small-scale motion are extended upstream near the low-speed edge

(figures 3.13a,b). Farther downstream (x - 17.8 cm), the tail of the streamwise vortex

has clearly moved away from the spanwise vortex and is stretched in the upstream

direction (figures 3.13c-d). While the global features, such as general orientation and

morphology of the members of a spanwise group of streamwise vortices, are preserved

during passage through the streamwise domain considered here, the detailed structure of
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individual vortices within that group may evolve and become dissimilar as the vortices

are advected downstream. This can be inferred from projections of three-dimensional

contours of (u',a) (shown in figures 3.17-3.19 and discussed below). Structural

differences between streamwise vortices of a given spanwise group can be related to

* tne onset of core instability of the primary vortices (cf, figures 3.3a,b).

Structural details of interfaces (or boundaries) separating turbulent and

nonturbulent fluid in shear flows can be studied by using zone-averaged turbulent

intensity (e.g., Glezer et al. 1989),

S(u'(x. t)(x, t))
(Y(x, t)

Zone-averaged flow quantities are normally biased toward (and hence emphasize) flow

features near turbulent boundaries characterized by low values of ('y). The values of

the zone-averaged u'. where (-y) a 1, are approximately equal to (u't). Although u' and

-y vanish outside turbulent regions, in the present manuscript (u'.) is calculated only

for (t) > 0.005.

Contours of (u'.) in the y-t plane are shown in figure 3.14(a) for spanwise-

uniform excitation and figure 3.14(b-e) for spanwise-nonuniform excitation. Figures

3.14(b-e) show cross sections of a streamwise vortex at four equally spaced spanwise

locations between the head and tail of the vortex. The head of the streamwise vortex

(figure 3.14b) appears to be separated from the spanwise vortex at the latter's upstream

edge, as may be inferred from a narrow region of lower turbulence intensity between

them. A cross section through a leg of the streamwise vortex (figure 3.14c) shows a

considerable increase in turbulence intensity in the braid region. The local peak in

turbulence intensity within the leg is due to its intersection with the y-t plane at a

small angle. The interaction between the tail of the streamwise vortex and the

spanwise vortex is shown in figures 3.14(d-e) and is accompanied by reduction in

turbulence intensity within the core of the primary vortex. This reduction occurs at

0
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spanwise locations that approximately coincide with legs of the streamwise vortices at

the low-speed edge of the primary vortex (see also figure 3.15g below). Note also the

upstream extension (toward the braid region) of the low-speed edge of the primary

vortex (figure 3.14e).

The phase-averaged flow structure was also studied in y-z planes at different

phase delays relative to the zero crossings of the time-harmonic excitation, E(zt). In

each of figures 3.15(a-h). for x - 10.2 cm. and figures 3.16(a-h), for x = 17.8 cm, we

show four pairs of contour plots of (u'.) taken at equal time intervals during the

excitation period. These times are referred to below as t i , t2 , t 3 , and t4 , and are

chosen so that t, and t3 correspond approximately to passage of the centers of the braid

region and the core of the spanwise vortex (as measured by the peak of (u'.)),

respectively. The contour plots (a-d) of each figure are for spanwise-uniform

excitation. Because cross sections in the y-z plane are extremely sensitive to spanwise

undulations of the primary vortices, the data in figures 3.15 and 3.16 are actually

plotted along lines of constant spanwise phase of the two-dimensional base flow. The

necessary phase information is obtained from a (discrete) Fast Fourier Transform of the

velocity time series measured at a y-elevation outside the mixing layer on the high-

speed side (the largest spanwise phase variation is 270).

Spanwise concentrations of zone-averaged turbulence intensity in the braid region

are clearly associated with the legs of the streamwise vortices (figure 3.15e), in

agreement with the observations of Breidenthal (1981). In the absence of the streamwise

vortices (figure 3.15a), there is very little turbulent activity in the braid region. The y-

z plane at t - t2 is closer to the downstream spanwise vortex and. hence, the streamwise

* vortices are at higher y-elevations than at t - t i . Furthermore, at t - t 2 (counter-

rotating) pairs of streamwise vortices are closer to each other, indicating that the heads

begin to form. We note that tails of streamwise vortices from the downstream braid

region appear at the low-speed side. The heads and tails of the streamwise vortices are

also apparent at the downstream edge of the spanwise vortex (t = t4, figure 3.15h).
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The contour plots at t - t3 (figures 3.15cg) represent cross sections through the

center of the core of the spanwise vortex (as may be measured by a maximum of the

turbulence intensity). Modification of the structure of the primary vortex by spanwise-

nonuniform excitation is evident in the appearance of concentrations of turbulent

intensity at spanwise locations of the heads of the streamwise vortices and from

breakdown of the primary vortex core into spanwise-periodic concentrations of small-

scale motion having a spanwise wavelength of approximately X,/2. The spanwise

locations of these turbulence concentrations also coincide with inflection points of the

mean spanwise profile of streamwise velocity (e.g., figure 3.8). Furthermore, as

discussed in §3.5 below, breakdown of the core is connected with the formation of

approximately spanwise-periodic concentrations of all three vorticity components within

the spanwise vortex as a result of its interaction with the streamwise vortices. We

believe that this breakdown is a precursor to the rapid spreading of three-dimensional

small-scale motion within the core of the spanwise vortex, which is necessary for

mixing transition. Figures 3.16(e-h) show that at x 17.8 cm the flow is clearly

dominated by the streamwise vortices. Of particular note is the reduction in the

spanwise periodicity of the concentrations of small-scale motion within the core of the

primary vortex (compare figure 3.16g to 3.15g), which suggests spanwise mixing. This

evolution is accompanied by a significant increase in the cross-stream width of the

mixing layer. The corresponding data for spanwise-uniform excitation (figures 3.16a-d)

show less cross-stream spreading and significantly less spanwise nonuniformity within

the primary vortex and the braid region.

As noted in §3.2. iso-surfaces of zone-averaged rms streamwise velocity

fluctuations may be useful in studying the three-dimensional structure of the flow.

Figures 3.17 and 3.18 show the surface (u',a(y,z,t))/AU - 0.03 at x - 10.2 cm and 17.8

cm, respectively, during two periods of the excitation waveform. These and the

following iso-surface plots (figures 3.19 and 3.22 below) begin at t t1 - Tr/8, i.e., at a
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cross section in the y-z plane close to the center of the braid region (cf. figures 3.15a,e).

When the excitation is spanwise-uniform, the spanwise vortices and the braid region

are approximately two dimensional. The spanwise trough along each primary vortex

separates upstream and downstream regions of concentrated velocity fluctuations,

apparently connected with entrainment of high- and low-speed fluid, respectively, into

the spanwise vortex. Spanwise-nonuniform excitation leads to formation of structures

with substantial spanwise nonuniformity. The heads of the streamwise vortices appear

on the high-speed side of the primary vortex, with spanwise spacings approximately

equal to the excitation wavelength, Xz . The legs of streamwise vortices in the braid

region are not all of equal strength, presumably due to spanwise variations in the strain

field, which is in turn affected by the primary vortices. (As shown in figu-re 3.3,

spanwise undulations of the primary vortices have a substantial effect on the evolution

of the streamwise vortices.) Figure 3.17(b) further suggests that appearance of the

streamwise vortices results in substantial enlargement of turbulent interfaces into the

free streams.

For spanwise-uniform excitation. figure 3.18(a) shows that, farther downstream,

the primary vortices have developed spanwise irregularities. These appear to be

associated with formation of unforced streamwise vortices. Note the decrease in the

inclination relative to the x-direction of the major axis of the nominally oval cross

section of these vortices. Because the fundamental instability mode becomes neutral

where the major axis is oriented normal to the streamwise direction (roughly at x = 10.2

cm in our experiments) and decays thereafter, this change has been connected by

Weisbrot (1984) with spatial amplification of harmonically excited waves. For

spanwise-nonuniform excitation, figure 3.18(b) shows a substantial increase in the cross-

stream width of the mixing layer (as may be defined by spreading of turbulent

interfaces). although this surface does not show details of the streamwise structures.

For x - 17.8 cm, the surface (u'z.(y,z,t))/AU - 0.055 (figure 3.19) indicates that the

0
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heads and tails of the streamwise vortices protrude into the downstream and upstream

braid regions, respectively. As discussed above, this protrusion is possible because the

heads and tails are advected at higher and lower velocities than the high-speed and

low-speed edges of the primary vortices, respectively. Figure 3.19 also suggests the

formation of approximately toroidal regions of (u',.) around the primary vortices due to

the upstream and downstream protrusion of the streamwise vortices (see also figure

3.3d).

3.6. An Approximation to Cross-Stream Vorticity

We next focus attention on the phase-averaged cross-stream component of

vorticity. (Uy) - 3(u)/oz - a(w)/ax. Owing to phase averaging, characteristic length

scales in the spanwise directioh are smaller than those in the streamwise direction.

Hence. the ensemble-averaged cross-stream vorticity components may be approximated

by ( Y) - a(u(x.t))/az. Although it is clear that this approximation makes it impossible

to distinguish between vortical and irrotational distortions of the streamwise velocity

profile, its use in what follows enables us to develop a three-dimensional structure of

the streamwise vortices. Contours of (k) are shown in figures 3.20. for x - 10.2 cm,

and figures 3.21. for x - 17.8 cm, at t - t1 , t2 , t3 , and t4 (cf, figures 3.15 and 3.16). In

most of the braid region, the vorticity within the streamwise vortices is likely to have

two approximately equal components in the x- and y-directions (2x and Qy). Thus.

streamwise vortices in the y-z plane at t - t1 (figure 3 .20e) may be recognized by

alternating concentrations of positive and negative (gy). coinciding with concentrations

Of (U'z) in figure 3.15(e). It should be noted that the level of (Qy) is quite low for

spanwise-uniform excitation (figure 3.20a). A notable feature of the results for

spanwise-nonuniform excitation (figures 3.20e-h and 3.21e-h) is the downstream

preservation of spanwise (and streamwise) coherence of the phase-averaged flow

features. In contrast, contour plots of (u'za) have less spanwise coherence at x = 17.8

cm (figures 3.16e-h) than at x - 10.2 cm (figures 3.15e-h).
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Of particular interest is the distribution of (0y) within the primary vortex core

when the mixing layer is subjected to spanwise-nonuniform excitation. [Note for

comparison the corresponding distributions for spanwise-uniform excitation in figure

3.20(c) for x = 10.2 cm and figure 3.21(c) for x = 17.8 cm.] The distribution of (0y) in

the y-z plane at t - t3 (figures 3.20g and 3.21g) is comprised of three approximately

regular spanwise rows, each consisting of approximately spanwise-periodic

concentrations of (6y) of alternating signs having a wavelength X,/2. Concentrations of

(0y) of the same sign in the top and bottom rows occur at approximately the same z-

coordinate and appear to be associated with streamwise vortices in the upstream and

downstream braid regions, respectively. The middle row (within the core of the

spanwise vortex) is offset in the z-direction relative to the upper and lower rows by

X7/2.

A strikingly similar distribution of the streamwise vorticity. 0.. is found in direct

numerical simulations of a mixing layer (Buell & Mansour 1989) that allow for

* streamwise growth. The spanwise distribution of Sx leads to spanwise-periodic

intensification and weakening of the spanwise vorticity, f0. and the formation of cup-

shaped concentrations. The cups form at the center of quadrupoles comprised of four

0 adjacent concentrations of 12 (two in the middle row), which produce positive spanwise

strain (i.e.. stretching of spanwise vorticity). The spanwise locations of the resulting

cups alternate above and below the middle row much like the heads and tails of the

streamwise vortices. The distribution of cross-stream vorticity, 0y, also has a

quadrupolar structure very similar to that of figures 3.20(g) and 3.21(g) (Buell, private

communication, 1990). These distributions of Ox and 2y within the cores of the

primary vortices may result from vortex lines looping between cups. In connection

with the spanwise-periodic concentrations of (u',a) in figure 3.15(g), we note that the

upper and lower cups in the results of Buell & Mansour appear at similar spanwise

locations and, hence, are likely related to the spreading of small-scale motion within the

core of the primary vortex.



-65 -

The existence of spanwise concentrations of (6y) in the upper and lower rows of

figures 3.20(g) and 3.21(g) may be jointly due to tilting of spanwise vortices by

streamwise vortices and to the transport of cross-stream vorticity along the legs of the

streamwise vortices in the upstream and downstream directions. It should be noted that

* axial flow along the legs of the streamwise vortices (associated with vorticity transport)

can also contribute to mixing (or at least stirring) of fluid from both streams. The

apparent "tagging" of the streamwise vortices by (6y allows for study of their

* protrusion into the upstream and downstream braid regions (figure 3.19). Contour plots

of 4) at t - t, and t4 (figures 3.21e,h) show vertical stacks of concentrations (pairs

and triplets) of the same sign, representing cross sections of streamwise vortices from

the upstream and downstream braid regions. As mentioned in §3.4, the numerical

results of Rogers & Moser (1989) show that (after pairing of two primary vortices is

completed) streamwise vortices are stretched beyond the upstream and downstream

spanwise vortices and toward the respective upstream and downstream braid regions.

Contours of a(v)/az in the braid region (approximating (P2x)) measured by Huang & Ho

(1990) show the appearance of cross-stream (vertical) pairs of concentrations of 01 .

Those data were obtained downstream of the first rollup of the primary vortices, and

the authors remarked that the formation of streamwise vortices began immediately

downstream of the flow partition.

Given the qualitative agreement between our measurements and the numerical

results of Buell & Mansour (1989) and Rogers & Moser (1989). we believe that, even

though (f2y) is only an approximation for the cross-stream vorticity component, it is

nevertheless useful in marking the streamwise vortices. Figures 3.22(a,b) show plots of

the surface (6?(y.z,t) - 4 sec-1 at x = 10.2 and 17.8 cm. respectively (cf, figures 3.17b

and 18b). At x - 10.2 cm, the legs of the streamwise vortices in the braid region are

unmistakable. Although the primary vortices are not immediately visible here, they can

be identified by the curvature of the nearby streamwise vortices and by spanwise
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concentrations of (k2) (figure 3.20g). At x = 17.8 cm, the protrusion of streamwise

vortices at some spanwise locations gives the appearance of a "cat's-eye"-like surface

around the primary vortex. In the braid region, this surface is comprised of the "local"

streamwise vortex, as well as streamwise vortices from the upstream and downstream

braid regions. A cross section of this structure in the y-t plane (at x - 17.8 cm, z -

-1.3 cm) is shown in figure 3.23. At this spanwise location, the "cat's-eye" structure is

already apparent at the high-speed edge. while the leg of the streamwise vortex at the

low-speed edge is stretched in the upstream direction. A vertical stack of three

streamwise vortices in the braid region can also be identified at some spanwise locations

in contour plots of (6y(y,z.t)) (figure 3.21e) and, as mentioned above, is also evident in

the numerical results of Rogers & Moser.

3.7. Conclusions

Previous investigations have demonstrated that an unforced plane mixing layer is

extremely receptive to small perturbations originating upstream of the flow partition.

These perturbations result in spanwise concentrations of streamwise and cross-stream

vorticity downstream of the flow partition and, subsequently, in the formation of

streamwise vortices bearing considerable resemblance to lambda vortices in a

transitional boundary layer. In the present investigation, streamwise vortices are

induced by a time-harmonic heat input, which has a spanwise-periodic amplitude

distribution, using a mosaic of surface film heaters flush-mounted on the flow partition.

The streamwise vortices form downstream of the flow partition, but upstream of the

first rollup of the primary vortices, presumably due to streamwise strain induced by the

primary vortices (Lin & Corcos 1984). Following the next rollup, the streamwise

vortices reside in the braid region between consecutive primary vortices.

We have found that, for a given excitation frequency, vi,ttally any spanwise

wavelength, Xz. synthesizable by the heating mosaic can be excitel qrd can lead to the
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formation of streamwise vortices. When the excitation wavelength is smaller than the

initial wavelength of the Kelvin-Helmholtz instability, XKH, the streamwise vortices

become narrower with decreasing X, due to spanwise interactions. At longer excitation

wavelengths, the streamwise vortices become nearly isolated in the spanwise direction,

and their shape appears to be wavelength independent. In connection with these

results, it is important to recognize that, in all laboratory facilities, spanwise-nonuniform

vorticity distributions are transported through boundary layers on the flow partition and

may undergo amplification or decay. Hence, the receptivity of these boundary layers is

inherently coupled to that of the ensuing shear layer. Furthermore, the sensitivity of

the plane mixing layer (and the upstream boundary layers) to spanwise-isolated

disturbances suggests that the streamwise growth of streamwise vortices is the result of

a localized, rather than a global, spanwise instability mechanism.

The spanwise excitation wavelength has a profound effect on the primary vortices.

When X. exceeds XKH, the primary vortices develop spanwise undulations, persisting

throughout the streamwise domain of the present observations. These undulations

appear to be associated with a (translative) core instability of the primary vortices.

Because the strain field within the braid region is dominated by the adjacent spanwise

vortices, these undulations are accompanied by an increase in the spread angle of the

streamwise vortices, and the appearance of additional vortex tubes along their legs.

When ). < XKH. the spanwise vortices appear to be stable (as may be judged by the

absence of spanwise undulations) to upstream disturbances that lead to the formation of

streamwise vortices. Because of subsequent interaction among the streamwise and

spanwise vortices, the direct effect of these disturbances on the vorticity distribution

within the spanwise vortices cannot be assessed.

An important objective of the present experiments has been the identification of a

mechanism which, following the appearance of streamwise vortices, leads to the

generation of small-scale motion and possibly to mixing transition. We have found the
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appearance of streamwise vortices to be accompanied by significant distortions in

distributions of mean streamwise velocity. These distortions have the shape of troughs

and ridges aligned in the cross-stream direction, alternate at the excitation wavelength

Xz. and are strongest at the high- and low-speed edges of the mixing layer (i.e., at the

heads and tails of the streamwise vortices). These distortions result in spanwise-

periodic inflection points not present in corresponding velocity distributions of the

unforced flow. Inflection points of the mean velocity distribution indicate the

formation of locally unstable regions of large shear in which broadband perturbations

already present in the base flow undergo rapid amplification and breakdown to small-

scale motion. Velocity spectra at cross-stream elevations of the inflection points develop

spanwise-periodic bands of high-frequency spectral components centered around the

heads and tails of the streamwise vortices.

As a result of interaction with the streamwise vortices, the primary vortices

develop spanwise-periodic concentrations of small-scale motion having a spanwise

wavelength of approximately ) 2/2 within their cores. We believe that this breakdown

of the cores of the primary vortices is a precursor to mixing transition because farther

downstream corresponding distributions of small-scale motion have less spanwise

coherence. We note that this loss of coherence does not affect other phase-averaged

quantities, such as velocity perturbations. The establishment of spanwise-periodic

concentrations of small-scale motion is probably associated with the inflectional

instability of the mean streamwise velocity distribution discussed above, because such

instability at the low- and high-speed edges of the mixing layer leads to spanwise-

periodic entrainment variations. Furthermore, these inflection points are presumably

related to spanwise-periodic concentrations of all three vorticity components within the

spanwise vortices. The evolution of these vorticity concentrations has been discovered

by direct numerical simulation (e.g., Buell & Mansour 1989), and their presence in the

flow can also be deduced from the present data. The numerical simulations predict the

0
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formation of cup-shaped concentrations of spanwise vorticity, the spanwise locations of

which almost coincide with concentrations of small-scale motion in the present data.

The apparent connection between spanwise concentrations of small-scale motion and the

changes in the vorticity field is indicative of the mechanisms that precede the onset of

mixing transition.

Finally, the research described here utilizes a nominally two-dimensional base flow

in which pairing of the primary vortices is inhibited by means of spanwise-uniform

harmonic excitation. Experimental results in an unforced mixing layer suggest that

small-scale transition occurs only after the first pairing of the spanwise vortices (e.g.,

Huang & Ho 1990). Because our findings indicate that mixing transition in a plane

shear layer subjected to spanwise-nonuniform excitation may be possible in the absence of

pairing, we have recently begun to investigate the effect on the generation of small-

scale motion of the pairing of primary vortices accomplished by periodic excitation at

the natural frequency and its first subharmonic. The evolution of small-scale motion is

being studied in the presence and absence of streamwise vortices.
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4. Phase Excitation of a Plane Shear Layer

4.1. Introduction

Experimental investigations of nominally two-dimensional plane shear layers

suggest that substantial spanwise deformations of the primary vortices can result from

relatively small disturbances in the free streams. Of particular note are the flow

visualization photographs of Chandrsuda, Mehta, Weir & Bradshaw (1978), which show

that spatially nonuniform entrainment into a single stream mixing layer can lead to

spanwise-nonuniform pairing and branching of the primary vortices. Browand &

Troutt (1980, 1985) used time series of instantaneous spanwise profiles of the

streamwise velocity in a two-stream mixing layer to detect irregular spanwise patterns.

which the authors described as vortex "terminations" or "branches." These patterns

were attributed in a later paper (Browand & Ho 1987) to spanwise-nonuniform pairing

interactions between adjacent primary vortices due to slight spanwise variations in the

free-stream velocities. This and other experimental evidence (e.g., Keller, Ellzey, Pitz.

Shephard & Daily, 1988, Delville, Bellin, Garem & Bonnet 1988) indicate that the

characteristic spanwise wavelength of the deformations of the primary vortices is

typically larger than the streamwise wavelength of the Kel,'i -Helmholtz instability )'KH

of the base flow.

The evolution of the primary (span wise) vortices in a plane mixing layer has been

connected with the propagation and amplification of two-dimensional instability waves

(e.g., Ho & Huerre 1984). The Strouhal number of the most-amplified wave

corresponds to the natural frequency of the mixing layer, and the associated phase

velocity is equal to the average velocity. Uc , of the two streams. This implies that even

small spanwise variations in Uc can lead to significant spanwise phase distortions of the

unstable wave train, and, as a result, to spanwise-nonuniform rollup and deformations

of the ensuing primary vortices. Such deformations are clearly apparent in the flow

visualization photographs of Lasheras & Choi (1988), which were taken in a shear layer

having spanw ise-nonun iform free-stream velocity distributions.

- 77 -
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Core deformations of the primary vortices can apparently be effected by the

introduction of time-dependent spanwise phase perturbations at the trailing edge of the

flow partition. Browand & Prost-Domasky (1990) and Dallara & Browand (1992) used a

spanwise array of speakers to excite two adjacent spanwise segments of a two-stream

mixing layer with time-harmonic wave trains having slightly different frequencies.

This excitation leads to the appearance of spanwise defects in time series of

instantaneous spanwise profiles of the streamwise velocity that are similar to the

unforced patterns previously observed by Browand & Troutt (1980, 1985). The defects

first appear at spanwise positions corresponding to frequency discontinuities and are a

precursor to the appearance of additional spanwise defects farther downstream.

Because the two frequencies are very close (f2 - 1.Ifl), the two spanwise segments of

the excitation waveform may be thought of as two almost identical wave trains

undergoing a slow time-periodic phase shift at their beat frequency (0.If 1). Hence, it

may be argued that defects appear (at the beat frequency) at spanwise positions of

phase discontinuities of the excitation waveform.

It is important to recognize that the measurements of Browand and his co-workers

were taken at a fixed cross-stream elevation near the outer edge of the mixing layer

(Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990). Hence, ostensibly the

defects are the footprints of three-dimensional vortical structures within the shear layer.

Such structures were observed by Nygaard & Glezer (1990) in a preliminary

investigation of the effect of spanwise-nonuniform phase excitation on the evolution of

a two-stream shear layer. The excitation waveform was a time-harmonic wave train

having a piecewise continuous spanwise-periodic phase distribution with a constant
0

phase difference, AMP. It was found that the primary vortices undergo spanwise

deformation, the wavelength of which typically exceeds XKH, and induce secondary

vortical structures, the shape and strength of which vary with A4. In particular, when

A = 1800. the primary vortices and the induced secondary vortices appear to be of
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comparable strength and diamond-shape vortex cells appear in the spanwise (x,z) plane

of the mixing layer.

Spanwise instability modes of the shear layer that can lead to core deformations of

the primary vortices have been studied analytically and numerically. In an analysis of

a shear layer modeled by an array of Stuart vortices, Pierrehumbert & Widnall (1982)

identified two such instability modes resultiag from interaction of two oblique time-

harmonic wave trains having equal amplitudes and opposite wave angles. The first

mode, referred to as "translative instability," is spanwise and streamwise periodic. The

authors conjectured that the translative instability can lead to the formation of

streamwise vortices, which had been observed in the experiments of Breidenthal (1978).

In a related study, Corcos & Lin (1984) showed that the rollup of spanwise vorticity

into a streamwise-periodic array of vortices can give rise to a translative core

instability, which allows spanwise perturbations to grow in such a way that all

spanwise vortices are identically distorted. The second instability mode identified by

Pierrehumbert & Widnall is subharmonic, can lead to spanwise-localized pairing of the

primary vortices, and has a short spanwise wavelength cutoff, below which three-

dimensional disturbances do not amplify. A similar instability was also observed in a

numerical study by Meiburg (personal communication, 1990).

In numerical simulations of a temporally evolving mixing layer, Comte & Lesieur

(1990) investigated the evolution of the subharmonic instability and the topology of the

streamwise vortices. They found that the introduction of small, random three-

dimensional isotropic disturbances can lead to spanwise-nonuniform pairing of the

primary vortices with a characteristic spanwise wavelength that is four times greater

than the streamwise wavelength of the Kelvin-Helmholtz instability. The addition of

two-dimensional disturbances leads to suppression of spanwise-nonuniform pairing, an

in-phase waviness of the primary vortices, and the formation of streamwise vortices in

the braid region.
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That deformations of the primary vortices are an important ingredient in the

evolution of the flow, even at high speeds, is demonstrated by the direct numerical

simulations of a compressible mixing layer by Sandham & Reynolds (1991). Using

random noise as the initial condition, the authors found that oblique waves (which lead

to the formation of oblique primary vortices) are the most rapidly amplified instabilities

for convective Mach numbers MC > 0.6. [While we are unaware of any other previous

experiments in which a plane shear layer was forced with a time-harmonic oblique

wave train, the low-speed experiments of Roos, Kegelman & Kibens (1989) in a shear

layer facility having a flow partition with a swept trailing edge clearly demonstrate the

receptivity of the flow to oblique disturbances.] Sandham & Reynolds further propose

that the nonlinear development of a single oblique wave and pairs of equal and opposite

oblique waves leads to the formation of oblique vortices and pairs of staggered A

vortices, respectively.

The numerical and analytical investigations cited above clearly suggest that the

plane shear layer is receptive to time-harmonic excitation having spanwise nonuniform

phase distribution, while experimental evidence suggests that spanwise phase distortion

of two-dimensional instability modes can have dramatic effects on the rollup and

evolution of the primary vortices. The present work builds on these findings and

focuses on the evolution of three-dimensional vortical structures resulting from spanwise

phase nonuniformities of the fundamental and subharmonic instabilities of the base

flow.

As discussed above, experimental observations suggest that phase distortions of the

nominally two-dimensional instability modes in a plane shear layer can lead to

significant distortions of the ensuing primary and secondary vortical structures. In most

of these investigations, phase distortions resulted from uncontrollable and unknown

disturbances in the free streams. Controlled excitation of phase disturbances has been

limited to time-periodic phase distortions by means of spanwise variations of the forcing
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frequency (Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990) and to

passive excitation of oblique instability modes by means of geometrical alterations in the

flow partition (Roos et al. 1989). The present investigation focuses on the effect of

controlled phase excitation on the evolution of the primary and secondary vortices. In

most of the experiments described below, the free-stream velocities are 30 and 10

cm/sec and the excitation frequency is Vf - 5 Hz.

4.2. Phase Excitation Using Surface Heaters

Due to the quadratic dependence of Joulean dissipation on input voltage to the

heaters, the spanwise distribution of input excitation power is given by

E(z,t) = E0 (z){I + cos[wf(z)t + d1(z)]} ,

where E0 (z) is the mean power, vf(z)= wr(z)/21T is the spanwise distribution of

excitation frequency, and 4)(z) is the spanwise phase distribution. The linear heater

array described in §2.1 is used to synthesize a 32-element discretization of E(zt), where

E0 (z), w(z), and 4)(z) are, in principle, arbitrary and can be programmed from the

laboratory computer. In the experiments of Nygaard & Glezer (1991), E0 (z) was

piecewise constant and spanwise periodic, and vf and 4D were constant. We note that

spanwise-amplitude modulation of the excitation wave train does not distort its

spanwise phase. In what follows, time-invariant phase excitation at a fixed Vf is

effected by spanwise-linear and spanwise-periodic piecewise-constant phase

distributions 4Dl(z) and 4 )sp(z), respectively. The spanwise-linear phase distribution

4tl(z) = f3z results in a time-harmonic oblique wave having a spanwise wave number 3.

In the present experiments, P < 0.87 cm- 1 , corresponding to phase increments

I < 61r/32 between adjacent heaters. Spanwise-linear phase distributions were used

by Robey (1987) and Schneider (1989) in experimental investigations of oblique waves

in a flat-plate boundary layer.
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To define 4)sp(Z), we let z = zo+Xzs, where z0 is an arbitrary reference, X, is the

spanwise wavelength, and 0 s 1. Then, in each wavelength, tsp(z) is given by

4Psp -0 for 0 s :s 1 and s2  s 1 (where sI < s 2 ), and Pp = AV for s I :s!S 2 .

In the present experiments, Xz is taken to be the width of 2, 4. 8, and 16 elements of

the linear heating array, s2-si - 0.5. and 0 A4 n. With (z) = sp(z), _.E(z.t) can be

expanded in Fourier series,

E(z, t) - Eo [ I + e(z, t)]

where

e~~)=co A Cos [ot + -D] + sin[(! 'kin wftt +-4!1F4 sin 2(2n- )fz
12Z 0i ~ =~ Co 2 2 n-lJ k,

n=

Thus, for a given A, E(zt) is a linear superposition of a time-harmonic spanwise-

uniform wave train and pairs of equal and opposite oblique waves having spanwise

wave numbers /, = (2n-l)2if/,. The amplitudes of the spanwise-uniform and oblique

wave trains are proportional to cos(Ab/2) and sin(A4/2), respectively (the amplitudes of

the oblique waves also decrease like I/n). Hence, when AP = 0, E(z.t) is a spanwise

uniform wave train and, when A - ir, E(zt) is a superposition of pairs of equal -nd

opposite oblique waves only.

We note that Psp(Z) was chosen because, unlike continuously differentiable

waveforms (e.g., a sinusoidal distribution), E(z,t) can be easily discretized by the heater

array for any Xz that is equal to the width of an integer number of heating elements.

Furthermore, as shown in §3.3, when AP = ir. there exists a short wavelength cutoff,

X'crit, below which E(z,t) is not amplified. Thus, it may be argued t :at there is a

corresponding cutoff spanwise wave number, Ocrit, such that pairs of equal and opposite

oblique waves are attenuated when fl, > flit. Hence, for small Xz , E(zt) is effectively

a linear superposition of a two-dimensional wave train and a single pair of oblique

waves, all at the same (excitation) frequency.

0
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The response of the flow to phase excitation close to the trailing edge of the flow

partition is shown in time plots of ensemble-averaged spanwise distributions of the

streamwise velocity perturbation, (Upert(Zt) (figure 4.1). [The ensemble-averaged

streamwise velocity. (u(x,t)), is phase-locked to E(zt) and (Upert(Xt)) - (u(x,t)- U(x),

where U(x) is the mean flow velocity.] These data are measured at x = 5.1 cm and

Y = Yo [Y0 is the cross-stream elevation where U(x) - - (UI+U2)/2]. In figure 4.1,

the origins of successive profiles are equally displaced in time, producing z-t maps that

capture spanwise features of the forced flow before the rollup of the primary vortices

is completed. The centers of the dark bands correspond to extrema of (upert(Z-t).

When the excitation waveform is spanwise-uniform (figure 4.1a), the flow appears

to be reasonably two dimensional. It is noted that the dark bands in the z-t maps have

been associated by Browand and his coworkers with the passage of the primary vortices

(Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990). In figure 4.1(b), 4)(z)

is spanwise-linear, 4D(z) - 3z, where 3 - 0.571 rad/cm, and it clearly results in

spanwise-oblique phase distribution of (upert(zt)). Furthermore, the dark bands in the

z-t map suggest the rollup of oblique primary vortices. In figure 4.1(c). 4(z) - 4),(Z)

and X, - 7.62 cm is the width of 12 heating elements such that A4M - ir at the center 6

elements. As discussed above, this excitation waveform corresponds a family of equal

and opposite oblique waves, and it leads to spanwise-periodic phase discontinuities of

(Upert(z.t)) at the excitation wavelength, Xz . The z-t maps suggest that the rollup of the

primary vortices occurs in spanwise segments of constant phase.

4.3. Spanwise-Linear Phase Excitation

The effect of a spanwise-linear phase distribution, 4D, - P(z-z 0 ) (where zo is an

arbitrary reference), is studied using flow visualization. The resulting excitation

waveform is a time-harmonic oblique wave train having streamwise and spanwise wave

numbers, ot = 2nvr/U, and B. In the present experiments, ot -5 1.57 cm-1. and the
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response of the flow to excitation with , 0.29, 0.58, and 0.87 cm-1 is shown in figures

4.2(a), (b), and (c). respectively. The corresponding wave angles, 0 = arctg3/oa), between

the wave vectors and the streamwise direction are 100, 200, and 290. It is important to

recognize that, unlike excitation of two-dimensional waves, the excitation of oblique

waves in a flat-plate boundary layer gives rise to a three-dimensional vorticity

perturbation field with important consequences for the evolution of the excited flow

(Hama, Rist, Konzelman, Laurien & Meyer 1987; Robey 1987).

The most striking feature in figure 4.2 is the formation of primary vortices that

are oblique in the spanwise (x.z) plane of the shear layer and are advected in the

streamwise direction. The angles between the oblique vortices and the streamwise

direction are virtually identical to the corresponding wave angles of the excitation wave

trains and remain almost invariant throughout the streamwise domain shown here.

(Successive primary vortices downstream from the flow partition are referred to below

as V1 . V2 , V3 . etc.) As can be seen on the left-hand side of each photograph, the

rollup of V, occurs along lines of constant phase of the excitation wave train. The

rollup clearly does not occur simultaneously along the axis of each vortex, as for the

two-dimensional case, but progresses obliquely (along a line of constant phase) as the

vortex is advected downstream.

It is apparent from the present and other flow visualization photographs that the

rollup at any position along the axes of V, in figure 4.2 starts at the same streamwise

station. x - xr. Furthermore, because xr is approximately the same in each of figures

4.2(a-c). it may be concluded that spatial amplification of all oblique waves over the

range of spanwise wave numbers considered here is almost identical. When g exceeds

0.87 cm - 1, we have observed that the flow is no longer locked to the excitation wave

train and a streamwise-regular pattern of oblique vortices no longer exists. This does

not necessarily imply that, for g > 0.87 cm - . oblique waves are not amplified in the

plane shear layer because, in the present experiments, the receptivity of the flow
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partition's boundary layers is inherently coupled to that of the ensuing shear layer.

* The results of Schneider (1989) indicate that the amplitude of oblique waves in a flat-

plate (Blasius) boundary layer measured at a streamwise position corresponding to

Re6. = 1300 is almost invariant for 0 < 150 , and decreases by an order of magnitude

* for 150 < 0 < 250.

The streamwise inclination of the primary vortices is apparently accompanied by a

change in the direction of the strain field in the braid region between them, compared

* to the two-dimensional case. As a result, secondary vortices that are formed in the

braid region are approximately aligned with the wave vector of the excitation wave

train. High-speed photography has shown that the rotation of these secondary vortices

* is counter-clockwise when observed in the y-z plane in the downstream direction (we

shall comment on that below). We note that, in the absence of phase excitation.

virtually no secondary vortices appear in the braid region between V, and V2 (see

figure 2.6b). However, as 03 is increased, secondary vortices in the braid region

between V1 and V2 become more pronounced (cf, for example, figures 4.2a and b).

These vortices are clearly associated with the rollup of V, in that they spread in the

braid region as the rollup of V, progresses. While the amplitude of E(zt) is spanwise-

uniform, spanwise phase discontinuities A4P = 0.683 having a characteristic length scale

equal to the width of one heating element (H - 6.3 mm) are introduced due to the

32-element discretization of 41. Although the secondary vortices are formed only after

the rollup of VI. they are clearly triggered by A4 I . as is evident from their spanwise

spacings and apparent strength.

The orientation of the secondary vortices is extremely sensitive to deformations

along the axes of the primary vortices, as is evident in the braid regions between V2

and V3 in figures 4.2(bc). The primary vortices appear to be more susceptible to such

deformations as 0 is increased. The characteristic wavelength of these deformations is

longer than the streamwise wavelength of the Kelvin-Helmholtz instability. When
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/3 = 0.87 (figure 4.2c), the primary vortex at the downstream edge of the Schlieren view

exhibits a bifurcation that is also apparent in the photograph of Chandrsuda et al. (their

figure 3). Similar bifurcations can be also be inferred from the data of Browand &

Prost-Domasky (1990) and were also observed by Nygaard & Glezer (1990) as a result

of spanwise-nonuniform phase excitation. As will be shown in the following

subsections, such deformations can arise due to interactions between spanwise-uniform

and oblique instability waves.

In connection with the appearance of the secondary vortices in the braid region.

we consider the temporal evolution of a train of oblique vortices resulting from

excitation by an oblique wave train in an unbound, two-stream, two-dimensional shear

layer. If y is the cross-stream coordinate, x is parallel to the wave vector of the

excitation wave train (which is normal to Y) and is normal to the -3 plane (i.e.,

parallel to the axes of the oblique vortices). Then, as shown by Crow (private

communication, 1992), the velocity and vorticity components in the z-direction, w and ",

are given by

D~ v [,va2~ + a2 ]
Dt at I a2 a 2 J

and

V1 -0 + I
Dt at +UV

respectively. These equations imply that, in the absence of viscosity, the i velocity and

vorticity components of fluid elements within the primary vortices and in the braid

region remain unchanged. Because the oblique vortices are advected in a shearing

flow, their induced velocity field acts to move high-speed (or low-speed) fluid down (or

,p) from higher (or lower) cross-stream elevations toward the braid region. The

streamwise velocity of the fluid that is moved from the free streams has components in

the i- and i-directions. Figure 4.2 suggests that shear flow in the i-direction owing to
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the difference in w across the braid region leads to rollup of secondary vortices in the

braid region, all of which have the same sense of rotation (counter-clockwise in the y-z

plane viewed in the positive x-direction). These vortices are aligned and stretched by

the strain field in the braid region, which is dominated by the velocity components in

the x-y plane.

4.4. Time-Periodic Spanwise Phase Excitation

* As discussed in §4.2, when ID - sp. E(zt) is a linear superposition of a time-

harmonic spanwise-uniform wave train and pairs of equal and opposite oblique waves

having spanwise wave numbers On = (2 n-l)2n/z. Recall that when A4 - 0, E(z,t) is a

0 spanwise uniform wave train and, when A4 - ir, E(z.t) is a superposition of the pairs of

oblique waves only. In this subsection, we discuss the effect of the magnitude of A4b

on the evolution of the flow. The magnitude of A4 varies in time when, similarly to

S 4 SP(z), the excitation frequency. wo(z) - 2ffvf, is spanwise periodic (with wavelength X.)

and piecewise constant. If the spanwise frequency variation is Aw - wf-f, where wf

2and wr are the two (piecewise-constant) frequencies of adjacent segments of the

excitation waveform, then the corresponding phase difference is A$ - (lo _ o2)t. When

Awo is small. A4 is slowly varying with time between 0 and 2ff over the beat period

Tb - 21r/Aw. In what follows, ), - 7.6 cm (f1 - 0.82 cm -1 ). Schlieren photography

and velocity measurements are taken phase-locked to Aw. Phase-locking is

accomplished by a conditional trigger derived by a logical "AND" of two pulse trains

corresponding to zero-crossings with positive slope of two adjacent segments of the

excitation wave trains. The resulting pulse train has a frequency AW and can be time-

delayed to achieve a desired phase relative to the data-acquisition clock.

The effect of excitation with v . 4.9 Hz and V2 - 5.0 Hz is shown in figure 4.3,

which is a sequence of composite Schlieren photographs taken in the x-z plane at six

equal time intervals centered around t - Tb/ 2 that corresponds to AM - r (figure 4.3d).

0
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The spanwise phase increments, A4. of figures 4.3(a-g) are 0.16w, 0.44wr, 0.727r, ff, 1.28t,

1.56n, and 1.841r, respectively. The spanwise field of view is approximately 1.5)". and

the frequency of the center segment is 4.9 Hz. At a given time, say t = to. the wave

fronts of all segments of the spanwise excitation waveform are in phase. Because the

frequency of the center segment is slightly lower than the frequencies of the outer

segments, the excitation waveform at the center segment begins to develop a phase-lag

with respect to the excitation waveforms of the outer segments when t > to. As a

result, adjacent spanwise segments of the primary vortices, which are phase-locked to

spanwise segments of the excitation waveform having different frequencies, develop

spanwise-periodic distortions. These distortions are the result of spanwise-nonuniform

rollup of the primary vortices, which (as shown in §3.1) is sensitive to spanwise phase

variations in the excitation wave train. We note that, since 4 and vf are very close, it

may be assumed that the streamwise amplification of adjacent segments of the excitation

wave train are virtually identical.

In figure 4.3(a), the spanwise phase increments are relatively small and the

primary vortices are almost two dimensional. Deformations of the primary vortices that

are symmetric about the midspan are more evident in figure 4.3(b). The undulations of

the primary vortices persist and even appear to intensify with downstream distance

(figure 4.3c). Because primary vortices in an unforced plane mixing layer are advected

in a nominally two-dimensional strain field and presumably deform in a plane that is

aligned with the direction of maximum strain, the amplitude of the deformation can

increase with downstream distance. There is a striking similarity between the spanwise

vortices in figures 4.3(bc) and the translatively unstable Stuart vortices studied by

Pierrehumbert & Widnall (1982). Their results suggest that the most unstable

translative disturbance has a spanwise wavelength that is equal to two-thirds of the

spacing of the undisturbed vortices, although disturbances having a broad band of

spanwise wavelengths can be amplified. Pierrehumbert & Widnall also argued that the
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translative instability can lead to the formation of secondary ("streamwise") vortices in

the braid region between adjacent primary vortices. Figure 4.3 clearly shows the

formation of secondary vortices when the primary vortices distort along their axes.

The secondary streamwise vortices form in the braid region near maxima of the

spanwise curvature of the primary vortices. Although these secondary vortices are

similar in appearance to streamwise vortices that can be triggered by spanwise-

nonuniform amplitude excitation as discussed in §3, there is a considerable difference in

the spanwise widths of the secondary vortices that result from the two different

excitation waveforms. While the spanwise widths of the former scale with the

deformation of the primary vortices, the spanwise widths of the latter (in the absence of

core deformations of the primary vortices) are significantly smaller (see figures 3.3cd).

It is clear that spanwise deformations of the primary vortices increase with & (figure

4.3c) and the induced streamwise vortices become considerably more pronounced.

When A4D - 7r (figure 4.3d). the flow is forced by pairs of oblique waves of equal

magnitude and opposite angle (without the presence of the two-dimensional excitation

wave train), and the structure of the primary vortices as viewed in the x-z plane is

drastically altered. The x-z projection of these vortical structures is comprised of a

pattern of diamond-shaped cells ("chain-link"-like structure) that repeat in the spanwise

and streamwise directions. Similar structures are also apparent in numerical

simulations of compressible and incompressible mixing layers that are forced by a pair

of oblique waves at the fundamental frequency (Sandham & Reynolds 1991; Collis,

Lele. Moser & Roger 1991). As will be shown below, these vortical structures are

primary vortices having spanwise-periodic deformations in planes that are tilted around

the z-axis relative to the streamwise direction. The spanwise deformations of adjacent

primary vortices are 1800 out-of-phase along the z-axis, thus forming the diamond-

shaped pattern in the x-z view. The deformed primary vortices may undergo pairing at

spanwise locations corresponding to streamwise edges of the diamond-shaped cells. Of
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particular note is the fact that the number of primary vortices is actually doubled, and

their passage frequency is equal to twice the forcing frequency. The streamwise length

of each cell, measured between its streamwise edges, is equal to XVJ; of the two-

dimensionally forced flow.

As mentioned in §4.1. the second spanwise instability mode identified by

Pierrehumbert & Widnall (1982) corresponds to spanwise-localized pairing of the

primary vortices. This instability mode has a streamwise wavelength that is twice that

of the two-dimensional base flow and, in contrast to the translative instability, has a

short spanwise wavelength cutoff. There is no question that the core deformation

corresponding to A1 - ir is essentially similar to the pairing instability of Pierrehumbert

& Widnall, even though the 'reamwise wavelength in the present experiments is XKH.

Similar to results of Pierrehumbert & Widnall, the next subsection confirms that core

deformation of the spanwise vortices can only be excited if the spanwise forcing

wavelength exceeds a short wavelength cutoff.

When AD > ir. the secondary vortical structures weaken and become pairs of

hairpin-like counter-rotating vortices (figures 4.3e-J). Because the wave train in the

center segment is now leading in phase relative to its adjacent segments, the center

segment of the primary vortex is symmetrically bent around midspan in the downstream

direction. The secondary vortices appear near upstream bends corresponding to the

outer segments, and they are displaced in the spanwise direction by ),,/2 compared to

secondary vortices resulting from phase excitation with A < ir (cf, figure 4.3c).

Similar to figures 4.3(b,c), this instability of the primary vortices in figures 4.3(e,f)

appears to be "translative" in the parlance of Pierrehumbert & Widnall (1982). Finally,

as A4' approaches 21r (figure 4.3g). the spanwise vortices become almost two dimensional

again.

We note in passing that the evolution of vortical structures in a plane mixing layer

is extremely sensitive to the spanwise distribution of 4(z). For example, when 4(z) is
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not spanwise-periodic but has a spanwise hat-shaped phase discontinuity with A(, =,r in

the center segment of the excitation waveform, each of the ensuing primary vortices

bifurcates into upstream and downstream branches that form a closed diamond-shaped

vortical cell (Nygaard & Glezer 1990).

Some features of the phase-averaged three-dimensional vortical structures are

obtained from measurements of the streamwise velocity component in the y-z plane at

x - 10.2 cm (the domain of measurements is rectangular, measuring 6 cm x 8.9 cm).

The free-stream velocities for these measurements are 36 and 12 cm/sec, v4 - 6.9 Hz,

V 2 - 7.0 Hz, and X, - 7.6 cm. Time series of the streamwise velocity component are

measured phase-locked to the beat frequency AVb - 0.1 Hz, such that each data record

includes 4480 measurements equally spaced over the beat period. Ensemble-averaged

data are calculated from 40 such data records. The vortical structures are distinguished

by concentrations of high-frequency turbulent fluctuations of the streamwise velocity

component. (utrms(Xt)), which is calculated following the procedure of Nygaard (1991).

Figure 4.4 shows the surfaces (utrms) - 1.0 cm/sec in the y-z-t coordinates during

two consecutive periods of the excitation wave train (v2 = 7 Hz). The spanwise phase

amplitudes, A41, at the starting time of each of figures 4.4(b-d) are chosen so that these

figures correspond approximately to figures 4.3(c-e). Note that because time increases to

the left, the flow appears to be moving to the right. In figure 4.4(a), A 2 0 and the

excitation wave train and the primary vortices are nominally spanwise uniform.

Figures 4.4(b-d) clearly show the evolution of the secondary vortical structures. Of

particular note is what appears to be spanwise-localized pairing of the distorted

spanwise vortices when A4 - if. One may also conclude that the spanwise vortices are

distorted in planes that are inclined relative to the streamwise direction.

Figure 4.5 is a time series of phase-averaged spanwise profiles of ensemble-

averaged spanwise distributions of the streamwise velocity perturbation (upert(zt))

measured phase-locked to AVb and plotted during one beat period (10 sec) of the two
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excitation wave trains. These data are measured at x - 10.2 cm and at a y-elevation

corresponding to a spanwise- and time-averaged streamwise velocity of 30 cm/sec.

These types of plots have been used by Browand and his coworkers to capture

spanwise features of the primary vortices, which appear as dark bands (Browand &

Troutt 1980, 1985; Browand & Prost-Domasky 1990). At t - to. the flow is nominally

two dimensional. As &4M increases, the primary vortices begin to develop spanwise

undulations of wavelength X,. Note that because time increases from left to right, the

bend in the center segment of the spanwise vortex points to the right. The effect of the

secondary vortices that are apparent in figures 4.3(b,c) is not felt at this cross-stream

elevation until their strength becomes comparable with the primary vortices

(t-t 0 > 3 sec). When t-t0 - 5 sec (A4 - 1r). it is not possible to distinguish between the

"secondary" and "primary" vortices, and a spanwise-cellular vortex structure emerges.

The center segment appears to be "dislocated" ("vortex termination" in the parlance of

Browand & Troutt) from the outer segments. It is important to recognize, however, that

these data are a cross-section of three-dimensional flow structures at a fixed cross-

stream elevation. When A(, > ir, the secondary vortical structures weaken (as can be

asserted by their induced velocity perturbations) and the spanwise undulations of the

primary vortices are essentially out-of-phase with respect to the undulations for

AP < ff. Although A4 varies linearly in time, the spanwise response of the flow as

shown in figure 4.5 is not exactly symmetric in time with respect to the instant when

AD- it. This is probably the result of spanwise phase distortion already present in the

nominally two-dimensional base flow (cf. figure 2.6b). These data, along with the data

of figure 4.4, demonstrate that the "dislocations," observed in figure 4.5 and in the

work of Browand and his coworkers, are clearly connected with a three-dimensional

flow structure.
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4.5. Receptivity to Excitation Wavelength

In this subsection, we discuss the effect of the wavelength of 4 sp on the evolution

of primary vortices and, in particular, the existence of a short-wavelength cutoff, below

which the spanwise vortices appear to be stable to spanwise-periodic phase excitation.

Recall that core deformations of the primary vortices in unforced mixing layers appear

to be have a characteristic spanwise wavelength, X, which exceeds XKH" In the present

experiments, A4 is time-invariant (AM - it) and X, is varied by the equivalent width of

two heating elements.

Figures 4.6(a-i) are Schlieren photographs in the x-z plane (10 cm < x < 18.0 cm)

where U, - 30 cm/sec, U2 - 10 cm/sec, vf - 5 Hz, and XKH - 4 cm. The spanwise

excitation wavelengths in figures 4.6(b-i) decrease from 10.26 cm to 1.27 cm in

increments of 1.27 cm. The response to spanwise-uniform excitation is shown for

reference in figure 4.6(a). When ), > 5.08 cm > XKH (figures 4.6b-!), the primary

vortices are deformed and diamond-shaped cells appear in the x-z planview. The

spanwise width of each cell is approximately equal to X,. When X, < XKH (figures

4.6g-i). the primary vortices become almost spanwise-uniform. These results indicate

that there is a critical spanwise excitation wavelength, Xcrit. below which spanwise

phase disturbances that are induced by a family of pairs of equal and opposite oblique

waves apparently decay. Figures 4.6(g,h) further imply that Xcrit 25 XKH" Because

XKH -5 (U1 +U2)/2vf, the corresponding spanwise wave number, fcrit 'r)f/(U +U2),

gives a criteria for the decay of the pairs of oblique waves.

Pierrehumbert & Widnall (1982) observed a short wavelength cutoff for a

subharmonic instability in which the primary vortices are sp-nwise undulated out-of-

phase with respect to each other. Similar to the argumenLs put forth by these authors,

the short-wave cutoff in the present experiments suggests that Xcrit increases like XKH

with downstream distance. Hence, phase disturbances of a given spanwise wavelength

gradually decay as they are advected downstream. In the present experiments, the flow

0
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is forced. Hence, XKH is almost unchanged within the streamwise domain shown in

figure 4.6 and, consequently, the magnitude of the phase deformations appears to be

invariant with x. On the other hand, in an unforced mixing layer, amplification of the

three-dimensional instability mode leading to deformations of the primary vortices may

be overwhelmed by the amplifying two-dimensional instability modes.

The photographs of figure 4.6 also reveal interesting features concerning the

evolution of small-scale flow structures. As the spanwise excitation wavelength is

decreased (but is still greater than Xcrit), small-scale structures appear within the cores

of the primary vortices, ostensibly as a result of mean flow distortion. As will be

shown in the next subsection, such phase excitation may result in a higher-order

inviscid inflectional instability that amplifies broadband disturbances.

4.6. Time-Invariant Spanwise Phase Excitation

The response of the shear layer to spanwise-periodic (Xz ,, 5.1 cm, 3 = 1.23 cm-1),

piecewise-constant, and time-invariant phase distribution with (AD - r/2) and without

(Al - 1r) the presence of a two-dimensional excitation wave train is shown in figures

4.7(a) and (b). respectively. We note that, when A4 - #1f/2, the amplitudes of the two-

dimensional wave train is approximately four times lower than the amplitude of the

lowest-order pair of oblique waves. Cross-stream distributions of the streamwise

velocity are measured at a number of streamwise (x) stations at three equally spaced

spanwise locations, z- -0, z2 - zl+z/4, and z3 -zl+X/2. Because the phase

distribution, 4sp(z), is taken to be symmetric relative to z - 0, Alt - tsp(z1)-4sp(z 3) and

a spanwise phase discontinuity occurs at z2 . The spanwise measurement stations are

marked in figure 4.7(a) for reference.

Perspective contour plots of the phase-averaged turbulent fluctuations (utrms) in

the y-t planes at z1 , z2 , and z3 at x - 15.2 cm during two periods of the excitation

wave train are shown in figures 4.8 (&t , r12) and 4.9 (M) - ir). A corresponding plot
0

for spanwise-uniform excitation at z I is shown for reference in figure 4.10. When
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the excitation waveform is spanwise-uniform (figure 4.10), passage of the spanwise

vortices at the measurement station can be recognized by concentrations of small-scale

velocity fluctuations. At this streamwise position, the cross-stream distribution of

(Utrms) within the spanwise vortex exhibits a fairly broad, large peak displaced toward

the low-speed edge of the spanwise vortex.

When AD = ir/2, the y-t planes, z - z l , z2 , and z3 . intersect a secondary vortical

structure at its upstream edge (the "tail"), at its leg in the braid regio: and at its

downstream edge (the "head"), respectively (figure 4.8). Note that the cross section of

the primary vortex at z - z3 , which corresponds to its upstream bend, is almost

unchanged, compared to the unforced case. At z = z2 , the primary vortex appears to be

0 somewhat weaker and, at z = zj, which corresponds to the downstream bend of the

primary vortex, its core is clearly distorted by the secondary vortex. Concentrations of

(Utrms) corresponding to the tail (z - z I ) and head (z -Z3 ) of the secondary vortex appear

at the high-speed and low-speed edges of the shear layer, downstream and upstream of

the bends of the primary vortex, respectively. Note that, because of the upstream bend

of the primary vortex, the secondary vortex is spatially less developed at z = z3 than at

* z = z 1 , and, hence, the peak of concentration of (utrms) corresponding to the head of the

secondary vortex appears to be weaker than the corresponding peak at its tail. A

cross-section capturing of the leg of the secondary vortex in the braid region is shown

* at z - z2 .

When A4P - a (figure 4.9), the planes z - z, and z3 are y-t cross sections through

successive streamwise corners of the staggered diamond-shaped cells in the x-z

* planview of figure 4.7, while the plane z - z2 is a y-t cross section through the sides of

these cells, halfway between z! and z3 . Concentrations of (utrms) in the y-t planes

z =z1 and z3 are reasonably similar and displaced in time by Tf/ 2 . The centers of the

* cross sections of the vortical structures in the y-t planes z, and z3 alternate in time

between y-elevations near the high- and low-speed edges of the shear layer; in the

0 n m
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plane z - z2 , the centers of successive cross sections have approximately the same y-

elevations. Figure 4.9 also shows that cross sections of vortical structures in each of

the y-t planes appear twice during each excitation cycle, suggesting that, when M - I,

the rollup of the primary vortices occurs at twice the forcing frequency. The relative

position in time of the cross sections of the vortices in the y-t planes z = z i and z3

suggests that the corners of the diamond-shaped cells in the x-z planview are formed by

upstream and downstream bends of successive spanwise vortices. These bends occur in

planes that are tilted around the z-axis such that the downstream and upstream edges of

the bends are close to the high- and low-speed streams, respectively (see also figure

4.4).

As discussed above, spanwise phase excitation results in spanwise-nonuniform

rollup of the primary vortices. When A1 - v and for a relatively short excitation

wavelength, the rollup of a given spanwise vortex begins (say, at t - to) at the centers

of segments of constant phase of the excitation wave train and continues along lines of

constant phase within the vortex sheet between the two streams. At spanwise positions

of phase discontinuities, lines of constant phase (within the vortex sheet) are inclined

relative to the streamwise direction toward spanwise segments that begin their rollup at

t, - to+Tf/2. The rollup at t - t ! forces the branches of the spanwise vortex, which

began its rollup at t - to, to be pushed downward toward the low-speed side such that,

at spanwise locations corresponding to centers of segments of constant phase of 4,sp,

there is a double rollup into two separate vortices. The rollup of a given spanwise

vortex is completed when the branches are joined that form at phase discontinuities on

each side of a spanwise segment of constant phase of the excitation waveform. Figure

4.11 shows a cross-stream view of the shear layer visualized by dye, which is injected

into the low-speed-side boundary layer at midspan (i.e., z - zt). This photograph

clearly shows the double rollup of the primary vortices and, furthermore, indicates that

spanwise-nonuniform pairing interactions may occur farther downstream.
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We next consider the amplification of perturbations at the forcing frequency and

its first harmonic by using streamwise distributions of cross-stream-integrated

amplitudes of the spectral components of upert (denoted A, and A2 , respectively). It is

clear that this amplification includes all modes at the excitation frequency and its first

harmonic. Figure 4.12 shows A, (closed symbols) and A2 (open symbols) for spanwise-

uniform excitation and phase excitation with A4 - ir/2 and ir. The data corresponding

to spanwise-uniform excitation were obtained at z = zI and are also plotted for

reference at z - z2 and z3 . When the flow is excited with a spanwise-uniform wave

train, A, increases somewhat between x - 5.1 and 7.6 cm and then remains almost

unchanged through x - 15.2 cm, where it begins to decay. The streamwise distributions

of A, (z - z1 ) and A, (z - z3 ) for A4 - 7r are reasonably similar, as may be expected

from the similarity of the flow at these x-y planes. These distributions suggest that, at

these spanwise stations, the perturbation wave train is amplified for x < 7.5 cm, decays

somewhat for 7.5 cm < x < 15 cm. and then continues to amplify through the

streamwise domain considered here. However. the corresponding distribution of

A, (z - z2) is substantially different and exhibits a decay for x > 10 cm. The important

observation here is that the amplification of pairs of oblique waves does not appear to

be spanwise uniform.-

The differences between A (z - z1 ) and A (z - z3 ) when the flow is forced with

A<P- ir/2 are presumably associated with the differences in the evolution of the

primary vortices at these spanwise stations, namely, the formation of downstream and

upstream bends that are closer to the high- and low-speed edges of the shear layer,

respectively. Similar to the case A- 7r, the amplitude distributions at z - z1 and z3

are different than the corresponding distribution at z - z2 , thus suggesting that the

oblique wave disturbances are not uniformly amplified across the span of the flow.

For both cases of phase excitation, the streamwise distributions of A 2 do not appear to

vary significantly across the span and are similar to the corresponding distribution

resulting from spanwise-uniform excitation.
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Composites of cross-stream contours of power spectra, P(v, y). and profiles of the

time-averaged streamwise velocity, U(x,y), at z - z1. z2, and z3 are shown in figures

4.13 and 4.14 for A' - fr/2 and r. respectively. Corresponding plots for spanwise-

uniform excitation at a single spanwise location are shown for reference in figure 4.15.

These profiles are measured at x - 10.2 cm (figures 4.13a. 14a, and 15a) and 15.2 cm

(figures 4.13b, 14b. and 15b). When the excitation waveform is spanwise-uniform, the

power spectra have pronounced peaks at the excitation frequency and some of its

higher harmonics. Note the appearance of a cross-stream band of spectral components

at higher frequencies (associated with the presence of small-scale motion) close to the

low-speed edge of the mixing layer (cf, figure 4.8).

When the flow is forced with M) - ir/2 (figure 4.13), the appearance of secondary

vortices is accompanied by distortions of cross-stream profiles of the mean streamwise

velocity. Such a distortion is apparent at z - zi. the spanwise location corresponding to

the tail of the streamwise vortex. The degree of distortion of the mean velocity profiles

indicates that the secondary vortices resulting from core deformations at the present

excitation wavelength are weaker than corresponding streamwise vortices resulting from

spanwise-nonuniform amplitude excitation (see figure 11 of Nygaard & Glezer 1991).

The appearance of the secondary vortex is accompanied by spreading of small-scale

motion (or propagation of turbulent interfaces) toward the low-speed side. thus

indicating a spanwise-localized broadening of regions where mixing may be enhanced.

At z - z3 , which corresponds to the head of the secondary vortex, distortion of the

streamwise velocity profile is much less pronounced, and P(v.y) is only slightly broader

than the corresponding distribution for the unforced flow.

When A4 - i (figure 4.14), the cross-stream spreading of the mixing layer

increases considerably, compared to the case of spanwise-uniform excitation. In

particular, the cross-stream width (as may be judged by the mean velocity profiles) at
z
z ,,z 1 and z3 is greater than at z - z2 . Cross-stream broadening of P(v. y) is clearly
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accompanied by the appearance of high-frequency spectral components. At x - 15.2

cm (figure 4.14b). the spectral peaks at the excitation frequency and its higher

harmonics are considerably diminished and there is a pronounced cross-stream increase

in the amplitude of high-frequency spectral components. These high-frequency

components appear to form two cross-stream bands near the high- and low-speed edges

of the flow, which, at z - z, and z3, correspond to the appearance of additional

inflection in the cross-stream distribution of U (note that cross-stream distributions of U

at z - zI and z3 are almost identical). The bands correspond to concentrations of

turbulent fluctuations within the cores of the primary vortices, as evidenced by the

cross-stream distributions of (utrm)s in figure 4.9.

4.7. The effect of Spanwise Phase Corrections on the Secondary Vortices

In §3.3 we show that time-harmonic excitation having spanwise-periodic amplitude

distribution, E(z) - E(z), leads to the formation of pairs of streamwise counter-rotating

vortical structures having spanwise spacings that are equal to the excitation wavelength,

X1. Furthermore, as shown in figure 4.16(a) (same as figure 3.3b, XZ - 5.1 cm), if

)1z > XKH, the spanwise vortices develop spanwise deformations at the excitation

wavelength. Because the phase of the excitation wave train is spanwise uniform, it

appears that the phase distortion necessary for the deformation of the primary vortices

is induced by the formation of the streamwise vortices upstream of the first rollup of

the primary vortices. Note that, at the downstream edge of the Schlieren view, small-

scale motion is significantly increased at spanwise locations corresponding to the heads

of the streamwise vortices, in comparison to the spanwise-uniform excitation of figure

2.6.

In what follows, we show that the suppression of the deformations of the primary

vortices has a substantial effect on the streamwise vortices and leads to a considerable

diminution in small-scale flow structure. The spanwise-periodic phase distribution,
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4Dsp(z) - (z). leading to the distortion of the primary vortices in figure 4.16(a) is

determined by using "strobed" video photography. This phase distribution is used for

phase excitation having a spanwise-uniform amplitude distribution as shown in figure

4.16b. Note that the core deformations of spanwise vortices are almost identical to the

core deformations shown in figure 4.16(a), except that the secondary vortices are formed

downstream of the first rollup. As mentioned in §4.4. the shape and apparent strength

of the streamwise vortices are affected by the magnitude of deformations of the

primary vortices. In common with figure 4.16(a), figure 4.16(b) also shows the

formation of multiple longitudinal secondary vortices having the same sense of rotation

on each side of an upstream bend of the primary vortices.

In figure 4.16(c), we show the response of the mixing layer to an excitation

waveform having both spanwise-periodic amplitude and phase distributions. While the

amplitude distribution is E0 (z) - E(z), the spanwise phase distribution is su(Z) ,Sz)

(i.e., added out-of-phase). The most important feature in figure 4.16(c) is that the

spanwise deformations of the primary vortices are completely cancelled. It should be

emphasized that the combined excitation is not a linear superposition of the appropriate

amplitude and phase disturbances, and the combined excitation waveform is generated

from a single three-dimensional row of surface heaters. This is in contrast to the two-

dimensional boundary layer experiments of Liepmann, Brown & Nosenchuck (1982),

where a linear disturbance excited by an upstream surface heater was cancelled by a

phase-delayed input to a downstream surface heater. As a result of the combined

excitation, the spanwise vortex remains almost undistorted throughout the streamwise

domain shown in figure 4.16(c). The secondary (streamwise) vortices still form

* upstream of the first rollup of the spanwise vortex, but the included angle between

their legs is smaller compared to figure 4.16(a). Furthermore, the multiple streamwise

vortices that are present in figures 4.16(a,b) are absent, and concentrations of small-

scale motions within the core of the primary vortex at the downstream edge of figure

4.16(c) are considerably smaller than in figure 4.16(a).
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4.8. Spanwise-Nonuniform Pairing of Primary Vortices

The subharmonic instability discussed by Pierrehumbert & Widnall (1982)

corresponds to spanwise-localized pairing of the primary vortices and is excited by a

superposition of two equal and opposite subharmonic oblique waves. These authors

speculate that adjacent primary vortex cores are displaced alternately above and below

the plane y - 0 and undergo spanwise-nonuniform pairing. Similar interactions were

observed in the recent numerical investigation of Comte & Lesieur (1990) as a result of

the addition of random three-dimensional disturbances to the two-dimensional base

flow. Comte & Lesieur show that successive primary vortices develop out-of-phase

spanwise undulations and assert that the undulations result in spanwise-nonuniform

pairing of the primary vortices that gives rise to a "vortex-lattice" structure.

In order to demonstrate that phase disturbances can also be imposed after the

rollup of the primary vortices is completed. the shear layer is excited simultaneously with

two time-harmonic wave trains at the fundamental (most-amplified) frequency, vf, and

its first subharmonic, Vf/ 2 . The excitation waveform at vf is spanwise-uniform. The

excitation waveform at Uf/2 has either amplitude (figure 4.17) or phase (figure 4.18)

distributions, which are spanwise periodic and piecewise constant (as described in §4.2).

The fundamental excitation results in nominally spanwise-uniform rollup of the primary

vortices at vf. Because the spatial amplification rate of the subharmonic wave train is

lower than that of the fundamental, it begins to affect the evolution of the primary

vortices farther downstream and leads to their spanwise-nonuniform coalescence. In

the experiments described below, the free-stream velocities are 42 and 14 cm/sec. vf - 9

Hz, and the spanwise wavelengths of the subharmonic wave train are h 10.2 and

20.3 cm.

In figure 4.17(a), the excitation wavelength is )h , 20.3 cm and the amplitude

discontinuity occurs at midspan (z - 0). The normalized spanwise amplitude of the

subharmonic wave train, Fh(z)/E0, is 1.0 for -20.3 cm < z < 0 (i.e., below midspan) and
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0.3 for 0 < z < 20.3 cm. Owing to the higher amplitude of the subharmonic wave train

* below midspan, the spanwise vortices begin to coalesce closer to the flow partition

below midspan than above it. The spanwise-nonuniform pairing leads to a spanwise

core deformation of the primary vortices and to the subsequent formation of secondary

* vortices in the braid region. The appearance of secondary vortices presumably leads to

an increase in small-scale motions at the downstream edge of the Schlieren view.

When sh = 10.2 cm (figure 4.17b), the center segment of the subharmonic

• excitation wave train for which Fh(z)/E0 - 1.0 is symmetric relative to midspan and

leads to earlier pairing of corresponding segments of spanwise vortices. As a result,

spanwise cells of paired vortices, which are reminiscent of Comte & Lesieur's (1990)

vortex-lattice structure (their figure lb). are formed around midspan. The streamwise

length of each cell is approximately 2 XKH. These photographs suggest that spanwise-

nonuniform pairing and core deformations (or phase distortions) of the primary vortices

far downstream from the flow par ,;on of an unforced plane mixing layer can result

from spanwise-amplitude nonuniformities of disturbances at the subharmonics of the

fundamental frequency. Clearly, this evolution may become even more complicated if

the streamwise amplification rate of these disturbances is spanwise nonuniform. This

may explain the wide variety of spanwise-nonuniform pairing interactions apparent in

plane mixing layers in the absence of subharmonic excitation (e.g., Chandrsuda et al.

1978; Browand & Troutt 1980, 1985; Keller et. al. 1988).

The evolution of spanwise phase nonuniformities of the subharmonic excitation

wave train is shown in figures 4.18(a,b). The spanwise distributions of sh(Z) for each

of the two excitation wavelengths are similar to the corresponding distributions of qh(z)

and Alt - i'. Recall that, for AMP - i, the subharmonic wave train is a linear

superposition of pairs of equal and opposite oblique waves. Assuming that the

amplitude immediately downstream of the flow partition and the streamwise

amplification rate of adjacent segments of the subharmonic wave train are the same.

S
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then pairing of spanwise segments of the spanwise vortices begins at the same

streamwise position downstream from the flow partition. Pairing of adjacent spanwise

segments alternates in time (every half period of subharmonic wave train) resulting in

pairing interactions that are clearly reminiscent of Pierrehumbert & Widnall's (1982)

subharmonic instability. Similar to the evolution of secondary streamwise vortices in

figure 4.17, the primary core deformation due to spanwise-nonuniform subharmonic

phase excitation also leads to the formation of secondary vortical structures and

enhancement of small-scale motions.

4.9. Conclusions

Previous experimental evidence (e.g., Chandrsuda et al. 1978; Browand & Troutt

1980, 1985) has suggested that the plane shear layer is receptive to spanwise-

nonuniform perturbations resulting from variations in the phase speed or frequency of

the fundamental instability of the two-dimensional base flow. The present work builds

on these findings and focuses on spanwise-nonuniform excitation of phase disturbances

at the flow partition that result in significant core deformations of the ensuing primary

vortices. An important consequence of these deformations is the appearance of

secondary vortical structures in the braid region, the shape, orientation, and strength of

which depend on the magnitude of the core deformation of the primary vortices.

When the spanwise phase distribution is spanwise-linear, the excitation wave train

is a single oblique wave resulting in primary vortices that are inclined in the

streamwise direction at the wave angle of the excitation wave train and are advected in

the streamwise direction. The rollup of each primary vortex progresses along a line of

constant phase (i.e., inclined relative to the trailing edge of the flow partition) of the

excitation wave train. A flow visualization study indicates that all oblique waves

having wave angles smaller than 290 have the same the streamwise amplification. This

wave angle corresponds to streamwise inclination of approximately 3XKH across the span
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of the test section. Secondary longitudinal vortices are formed in the braid region at

spanwise locations corresponding to discretization discontinuities in the excitation wave

train. These vortices are approximately normal to the axes of the primary vortices,

indicating the direction of principal strain in the braid region between adjacent primary

vortices.

Spanwise-periodic core deformations of the primary vortices are excited when the

phase distribution of the excitation wave train is spanwise periodic. In the present

experiments, 4'sp is piecewise constant (0.5 duty cycle) with variable phase

discontinuity, A, and spanwise wavelength, X,. The excitation waveform is a linear

superposition of a two-dimensional time-harmonic wave train and a family of pairs of

equal and opposite oblique wave trains of decreasing amplitudes and increasing wave

numbers. The relative amplitudes and phase of the two-dimensional and oblique waves

are prescribed by the magnitude of AC'. In particular, when AD - 0. the excitation is

reduced to a two-dimensional wave train and, when A r, the excitation waveform

consists only of the oblique waves. In the latter case, the primary vortices appear to be

unstable to phase excitation that has a characteristic spanwise wavelength exceeding

XKH I or a spanwise wave number below 0 - 4nvr /(UI +U2 ) (figure 4.6).

The effect of the magnitude of A4 on the evolution of secondary vortices is

studied using an excitation waveform having a spanwise-periodic piecewise-constant

frequency distribution where the spanwise frequency discontinuity is small. As a

result, AM is time periodic and slowly varying (at the beat frequency between adjacent

segments). When AV > ir or A4 < ir, the streamwise vortices resemble counter-rotating

vortex pairs that form in the unforced mixing layer, however, their strength and the

inclination of their axes relative to the streamwise direction increase with A4 (and the

deformations of the primary vortices). When A4 - ir, the "secondary" vortices are

indistinguishable from the primary vortices, and the vortex system in a Schlieren x-z

planview resembles chain-link-like cells. Measurements of turbulence intensity and
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flow visualization in the cross-stream plane show that the spanwise-undulated vortices

are formed at twice the excitation frequency. The spanwise-periodic deformations of

successive vortices are offset by X,/2 in the spanwise direction, yielding out-of-phase

deformations between adjacent primary vortices. Hence, the primary vortices appear to

undergo spanwise-periodic pairings at streamwise edges of the cellular structures.

Similar to spanwise-nonuniform amplitude excitation. spanwise-nonuniform phase

excitation can result in significant spanwise and cross-stream distortion of time-

averaged profiles of the streamwise velocity. The appearance of higher-order

inflectional instabilities, where broadband perturbations already present in the base

flow are amplified, results in spanwise-nonuniform concentrations of small-scale motion.

Power spectra of the streamwise velocity component show that, when &I - 7t, the width

of the mixing layer increases substantially, as indicated by cross-stream spreading of

high-frequency spectral components associated with small-scale motion.

As was shown by Nygaard and Glezer (1991), the excitation of streamwise vortices

at spanwise wavelengths that are greater than XKH can result in deformations of the

primary vortices and in the appearance of additional streamwise vortices. The

importance of core deformations of the primary vortices to the generation of small-scale

motion was demonstrated by its cancellation using proper phase excitation. As a result,

the strength of the secondary vortices in the braid region is apparently reduced, and

spanwise concentrations of small-scale motions farther downstream are substantially

diminished.

Deformations of the primary vortices can also occur downstream of the first

pairing of the primary vortices if the pairing is spanwise nonuniform. This may be

caused by a subharmonic disturbance (natural or forced) having spanwise phase or

amplitude nonuniformities. As a result, the ensuing (paired) primary vortices deform

and induce the formation of streamwise vortical structures. Core deformations and

spanwise-nonuniform coalescence of the primary vortices is effected using linear

.0.... .
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superposition of two time-harmonic excitation wave trains at the fundamental frequency

and its first subharmonic. The fundamental wave train is spanwise-uniform, while the

subharmonic has a spanwise-nonuniform phase distribution. This excitation leads to

controlled spanwise-nonuniform pairing. The primary vortices develop spanwise

undulations and induce secondary vortical structures that are ingested into the cores of

the coalesced primary vortices and lead to enhancement of concentrations of small-scale

motion farther downstream compared to spanwise-uniform pairing. Because the

secondary vortices are critical to the maintenance of small-scale mixing, this is a

plausible mechanism for the continuation of mixing downstream of mixing transition.
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5. Pulsed Excitation of the Plane Shear Layer

5.1. Introduction

Although the evolution of anharmonic disturbances in plane mixing layers is

substantially different from time-harmonic disturbances, no previous investigation has

studied the effect of the former. A fundamental understanding of the evolution of

anharmonic disturbances and their interaction with the nominally two-dimensional base

flow structure owes much of its importance to technological applications in chemical

reaction and unsteady combustion processes.

The technology of pulse combustion was known as early as World War II.

Compared to conventional combustion systems, devices using pulsed combustion yield

higher heat transfer rates, combustion intensities, and thermal efficiencies, accompanied

by lower emission levels of nitrogen oxides (Keller & Westbrook 1986; Keller, Bramlette,

Dec & Westbrook 1989). Pulsed combustion involves a three-dimensional transient flow

field that is highly turbulent and has variable physical properties (Barr, Dwyer &

Bramlette 1988). Therefore, investigations of three-dimensional transient flow fields are

important for the advancement of this attractive technology.

0 Modifications of the flow structure in plane mixing layers have been commonly

achieved by manipulation of instability modes via time-harmonic excitation waveforms

having spanwise-uniform (e.g., Oster & Wygnanski 1982) or spanwise-periodic (Nygaard

* & Glezer 1991) amplitude distributions. Other types of time harmonic excitation have

utilized spanwise-nonuniform phase or frequency distributions (Nygaard 1991). It is

important to recognize that, within the streamwise domain of influence of the time

harmonic excitation, the flow can only evolve spatially and its temporal evolution is

restricted to the forcing frequency and its higher harmonics.

In real-time control applications of mixing layers of practical interest, the fact that

these flows are not only irregular both in time and space, but are also subjected to

temporally and spatially complex disturbances with important consequences to the
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mixing. is not a trivial problem. In fact, in an unforced shear layer, the large coherent

vortical structures do not appear at regular time intervals and may develop both in time

and space.

The importance of this difference in boundary layer transition was established by

Gaster & Grant (1975), who studied the evolution of a wave packet formed in a laminar

Blasius boundary layer by a momentary acoustic pulse. The flow disturbances caused

by the passage of the packet were detected by a hot-wire anemometer positioned just

outside the boundary layer. The authors observed, that at some distance downstream

from the pulse generator, the packet, which was initially smoothly contoured and with

peak amplitudes close to its center, gradually distorted and developed nonlinear

characteristics, which eventually led to the breakdown to turbulence. The authors

further stated: "The non-linear development of a wave packet and its final breakdown

into a turbulent spot involves processes akin to those of natural transition and a

controlled experiment of this regime may provide fresh insight into the various

interactive mechanisms that arise."

A theoretical linear model of a wave packet in a flat-plate boundary layer was

proposed by Gaster (1975), who compared the experimental and analytical (based on the

linear stability theory) evolutions of frequency-wave-number spectra of a flat-spectrum

input. It was found that the overall shapes of the disturbed region of the wave packet

and the manner in which it spreads as it travelled downstream could be predicted by

the model. Gaster later (1987) concluded that an isolated wave packet may lead to

transition to turbulence much faster than a continuous wave train (Gaster, private

communication).

In an experimental study of an axisymmetric free shear layer of an air jet, Kleis,

Hussain & Sokolov (1981) showed that a momentary disturbance, resulting from the

triggering of a three-dimensional turbulent spot by a spark at the nozzle boundary layer

upstream of the exit, is amplified much faster than the flow instabilities of the

surrounding axisymmetric shear layer. In an earlier study, Sokolov, Hussain, Kleis &

.0
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Husain (1980) found that the spot is a large-scale, elongated, turbulent structure

spanning the entire width of the shear layer, but does not appear to exhibit self-similar

characteristics.

Balsa (1989) studied analytically the evolution of three-dimensional disturbances in

a parallel mixing layer having a piecewise-linear velocity profile (Rayleigh profile). He

showed that, in contrast to the boundary layer, a wave packet that develops in a plane

shear layer has wave fronts that are approximately parallel to the spanwise direction.

Balsa also studied the receptivity of the shear layer to pulsed-type and harmonic

excitations and concluded that the shear layer is most receptive to external forcing near

its centerline (y - 0).

In an experiment on pattern evolution in the two-dimensional mixing layer,

Browand & Prost-Domasky (1990) studied the development of natural and artificially

forced vortex defects. The forced defects were acoustically introduced by a row of 16

loudspeakers mounted along the span of the wind tunnel ceiling. The most prominent

feature of such defects or dislocations is the occurrence of an interconnection of two

vortex structures (or waves). The authors observed that the influence of the original

defect appeared to spread laterally across the span as a propagation disturbance field,

which extended both upstream and downstream from the original defect.

The evolution of a momentary, spanwise-uniform disturbance in a plane mixing

layer was studied by Glezer, Wygnanski & Gu (1989). The experiment was conducted

in an open-return air facility, and the streamwise velocity component at midspan was

measured using a rake of hot-wire probes. The flow was forced by pulsed amplitude

modulation of a time-harmonic wave train using a spanwise-uniform thin flap mounted

at the trailing edge of the flow partition. The response to the modulating pulse was

decomposed to a family of modal wave packets. It was found that the fundamental

wave packet is advected with the mean velocity of the two streams, and its streamwise

extent and dominant frequencies remain virtually unchanged with downstream distance.
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An important observation of Glezer et al. was that the passage of the disturbance is

accompanied by a spatial and temporal change in the momentum thickness of the

harmonically excited flow. Cross-stream distributions of the streamwise velocity

perturbation within the spatially amplified region of the disturbance are similar to those

of the harmonically excited flow at streamwise stations having the same momentum

thickness. The authors also discovered that high turbulence levels, not prevalent in the

harmonically excited shear layer, are detected within the disturbance and suggest the

possibility of transient mixing enhancement.

The purpose of the experimental work described in §5 was to study the spatial

and temporal evolutions of three-dimensional pulsed disturbances in a plane mixing

layer, their role in the development of the flow. and the extent of their interaction with

the nominally two-dimensional flow structures.

5.2. The Excitation Waveform and Measurement Procedure

The disturbance is effected by spanwise-nonuniform pulsed amplitude modulation

of a two-dimensional time-harmonic carrier wave train. The excitation waveform is

pulsed amplitude modulation of a time-harmonic carrier wave train (figure 5.1) and is

synthesized by a mosaic of surface film heaters. This waveform is chosen because

temporal and spatial irregularities in the unforced mixing layer result in a substantial

scatter in the amplitude and arrival time of a pulsed disturbance at the measurement

station. In order to minimize this difficulty, a clear phase reference is provided by the

low-level, two-dimensional, time-harmonic wave train (Glezer et al. 1989).

Similar to §2. the excitation power is comprised of a linear superposition of

spanwise-uniform time-harmonic wave train and a time-periodic pulse,

E(z.t) - E0 [1 + sin(2#f 0 t)] + EP (z.t) .

where E0 is constant. The pulse Ep(z.t) is defined as
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f3Eo ,  for -2AZ z ! +2AZ and t,-uT < t < tc+uT
EP(z't) 

_

0, otherwise

where y is a positive constant, AZ is the width of a heating element (6.35 mm). 2a

equals the ratio between the duration of the pulse and the period of the wave train, and

tc~-oT and to+aT are the rise and fall times of the pulse, respectively. We define

tc =(A + nMp )Tf. n - 0, 1, 2, 3.

where ATr is a time delay (A<I) between the pulse (at time tc) and a previous zero

crossing of the time-harmonic wave train, and MP is a positive integer (the frequency

of the pulse train is f0 /Mp).

In the present experiments, the free-stream velocities are 30 and 10 cm/sec, and

the excitation frequency of the two-dimensional wave train is f0 = 5 Hz. which

corresponds to a streamwise wavelength XKH 2 4 cm. The resistance of each heating

element is 3.6 S2. and the average power dissipated by each heating element for the

time-harmonic wave train is 5.9 watts (rms).

Cross-stream measurements of the streamwise velocity are taken with a rake of 31

hot-wire sensors, which is traversed 40 mm on each side of midspan. The pulsed

disturbance is synthesized by a group of four adjacent heating elements centered at the

midspan, i.e.. 4AZ = 25.4 mm. The ratio between the power of a pulsed disturbance

and the power dissipated by the time-harmonic wave train over one period (2uy) is

selected to be 2, based on previous experience with two-dimensional pulsed disturbance

(Glezer et al 1989). However, unlike the previous experiments in which the duration of

the pulsed disturbance was the period of the time-harmonic wave train, in the present

experiments, 2r is 0.4 and -y - 5. The time delay, ATf, between the pulsed disturbance

at t - tc and the zero crossing of the excitation wave train is selected using Schlieren

visualization downstream of the flow partition. The evolution of the disturbance

depends critically on ATf. For example, when A = 1/4 the ensuing pulsed disturbance

0
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is hardly visible. The disturbance appears to be strongest when A = 3/4. A reduction

* in the duration or the amplitude of the pulse does not appear to alter substantially the

characteristic evolution of the ensuing disturbance, although the disturbance becomes

weaker, which makes its detection more difficult. The pulsed disturbances are repeated

every eight cycles of the two-dimensional time-harmonic wave train (Mp = 8). This

repetition rate was chosen so that successive pulsed disturbances will not affect each

other.

The streamwise velocity component is measured phase-locked to the excitation

waveform at equally spaced grid points (2 mm apart) in the y-z plane. The grid is

symmetric relative to the y- and z-axes and measures 60 mm x 80 mm, respectively.

These measurements are repeated at six streamwise stations (25.4 mm apart) between

x = 51 mm (2 1.3XKH) and 178 mm (4 .4 5XKH). The first streamwise measurement

station, x - 51 mm, approximately corresponds to the location where the first rollup of

the primary vortices occurs. The sampling frequency is 300 Hz, which is equivalent to

60 data points per period of the time-harmonic wave train. Each velocity data record

contains 1024 data points and includes 17 periods of the time-harmonic wave train and

two consecutive pulsed disturbances. Fifteen hot-wire channels are sampled

simultaneously.

5.3. Evolution of Vortices: Flow Visualization

0 The spatial evolution of the pulsed disturbance is visualized in the x-z plane using

a double-pass Schlieren system by exploiting the small changes in index of refraction

due to the surface heaters (Nygaard & Glezer 1991). The Schlieren view may be

thought of as a planar projection of streaklines of slightly heated fluid elements. Figure

5.2 shows a sequence of composite Schlieren photographs. each consisting of two

partially overlapping images having nominal diameters of 132 mm and centered at

midspan. The flow direction in each frame is from the left to the right, and the

0
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streamwise domain of each composite is 10 mm < x < 218 mm (the first rollup of the

spanwise vortices in the absence of the disturbance occurs at x - 50 mm). The

Schlieren images were obtained from a high-speed (1000 frames per second) video

movie. The time interval between two consecutive composites is 0.1 sec (-- T/2).

Figure 5.2(a) was taken before the pulsed disturbance appeared in the field of view,

and the primary vortices are uniform along the span. In figure 5.2(b), the disturbance

is seen at the left-hand (upstream) edge. and the deformation of the primary vortex

immediately downstream of the disturbance is visible. The p'ilsed disturbance first

appears in the braid region between two spanwise vortices, as shown in figure 5.2(c),

and leads to an "X"-shaped vortex, which is connected with the upstream and

downstream spanwise vortices. In figure 5.2(d), the vortex structure upstream of the

"X"-shaped vortex forms a diamond-shaped cell around midspan. Note that the

spanwise domain of influence of the disturbance is still limited at this streamwise

station. The primary vortex upstream of the disturbance is apparently not affected by

the pulse, as can be seen from figure 5.2(e). Figures 5.2(1-') show that the pulsed

disturbance spreads symmetrically along the spanwise direction as it is advected

downstream, and it ;eems to lead to a local pairing of the two adjacent primary

vortices, which is accompanied by the generation of small-scale motions. One can

expect that the domain of influence of the pulsed disturbance is characterized by higher

turbulence levels compared to the two-dimensional base flow. Figure 5.2(j) shows that

the primary vortex upstream of the pulsed disturbance is remarkably uniform along its

span. Figures 5.2(a-j) clearly indicate that the streamwise domain of influence of the

pulsed disturbance is limited to 1-2 wavelengths of two-dimensional base flow.

5.4. The Phase-Averaged Pulsed Disturbance

The streamwise variation of the momentum thickness, e(x). of the flow when it is

subjected to two-dimensional time-harmonic excitation is shown in figure 5.3. The

0
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momentum thickness is calculated from the time-averaged data of ensemble-averaged

velocity records. The slope of the linear fit to the data is dG/dx -5 0.012 and, for x >

76 mm (1.9X 0 ), 0 increases linearly with x. At x - 178 mm (4.45X0 ) , 0 5 3.5 mm.

which is approximately twice the value at x - 51 mm. Hence, within the streamwise

domain of the measurements, the Reynolds number, based on 6(x) and the averaged

free-stream velocity of the base flow UC, varies from 300 to 700. Time-averaged cross-

stream profiles of the streamwise velocity U(x), for 51 mm < x < 178 mm, are shown in

figure 5.4 in similarity variables (y-y0 )/20 (U = U,: @ y - y0 ) and (U-U1 )/(U2-Ul).

Almost all data points fall onto a single curve, which means that the streamwise

velocity profiles of the base flow are self-similar. The spanwise uniformity of the base

flow is illustrated by surface plots of time-averaged streamwise velocity, U(x), in the y-

z plane at x= 76, 127, and 178 mm, in figure 5.5. The base flow is quite uniform

across the span at upstream stations and becomes slightly distorted farther downstream

due to small imperfections in the experimental apparatus.

Surfaces of ensemble-averaged cross-stream velocity profiles, (u(x;t)), measured at

midspan (z=0) at x- 76, 127, and 178 mm, are shown in the y-t plane in figure 5.6.

Note that, in the absence of the disturbance, the phase of the streamnwise velocity

fluctuations across the mixing layer changes approximately by it, as can be seen, for

example, by following a line of constant time when the velocity perturbation has a peak

on the high-speed side and a valley on the low-speed side. The temporal change in the

streamwise velocity due to passage of the pulsed disturbance is clearly distinguishable

from the response to the time-harmonic wave train, and is felt across the entire width

of the shear layer. Of particular note is the temporal evolution of the three velocity

peaks on the high-speed side associated with passage of the disturbance at the

measurement station. These peaks appear closer in time farther downstream, indicating

a possible occurrence of "local pairing" of the primary vortices.
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Ensemble-averaged profiles of the streamwise velocity perturbations. (Upet(x. t)) =

(u(xt)) - U(x), in the z-t plane y = 10 mm at x - 76, 127. and 178 mm, respectively, are

shown in figure 5.7. Spanwise profiles of (Upert) are plotted at equally spaced time

intervals in figure 5.7(a), while time series of (upert) are plotted at equally spaced

spanwise stations in figure 5.7(b). These data emphasize temporal and phase variations,

respectively. Figure 5.7 shows that the pulsed disturbance affects approximately three

wavelengths of the fundamental wave train, and outside of this domain of influence the

time-harmonic wave train is spanwise-uniform. The pulsed disturbance is advected

downstream at approximately Uc, as can be determined from the delays in its arrival

time at the downstream measurement stations. The "X"-shaped disturbance spreads

both in time (and thus in x) and in the spanwise (z) direction as it is advected

downstream and, at x - 178 mm, it affects the entire spanwise width of the

measurement domain. The streamwise length of the pulsed disturbance, however, does

not seem to grow as dramatically and appears to be limited by the fundamental

instability of the base flow. A similar observation was also made by Glezer et al.

(1989) regarding a two-dimensional disturbance. Dallard & Browand (1992). who

studied the evolution of vortex structure of plane mixing layers in the vicinity of a

vortex dislocation, reported that the vortical "defect" grows more rapidly in the

spanwise direction than in the streamwise direction--thus preserving a tendency for

two-dimensionality.

The evolution of the pulsed disturbance is studied using surface plots of

(utrms(x.t)) in y-z-t coordinates (figures 5.8a-c measured at x - 76, 127, and 178 mm.

respectively) and plotted during three periods of the excitation wave train. These data

allow for a detailed study of the three-dimensional features of the flow structure

induced by the disturbance and its interaction with the spanwise vortices. As

demonstrated by the photographs of figure 5.2, at x - 76 mm, an "X"-shaped structure

is formed in the braids region. between two adjacent primary vortices, that is connected
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with the upstream and downstream primary vortices. Farther downstream (x - 127

mm). the central region of the "X" structure moves closer to the high-speed side and

appears to be catching up with the downstream primary vortex in a way that resembles

spanwise-localized pairing. This process is accompanied by a striking increase in rms

velocity fluctuations induced by the disturbance (x - 178 mm).

Contours of (Utrms(Xt)D in the y-t plane z - 0, at x - 76, 127, and 178 mm. are

shown in figure 5.9. At x - 76 mm, the cross-stream width of the disturbance is

comparable to that of the harmonically forced flow, and it appears between two vortices

of the base flow. The elapsed time between passage of primary vortices upstream and

downstream of the disturbance corresponds to three wavelengths of the fundamental

wave train. At x - 127 mm, the cross-stream extent of the pulsed disturbance is

approximately 1.5 times that of the two-dimensional wave train, and local pairing of the

spanwise vortices is apparent during passage of the disturbance. At x - 178 mm, the

disturbance is about twice as wide in the cross-stream direction as in the harmonically

forced flow. Furthermore, the turbulence intensity within the pulsed disturbance is

much higher than at the upstream locations.

The spanwise spreading rate of the disturbance may be inferred from the

distortion of the shape of the streamwise velocity profiles of the nominally two-

dimensional base flow. A cross-stream integral measure of such distortion is the

temporal momentum thickness, G(xz;t), defined as

+00

e(x,z't) - J-0 U(xt)(l - U(x;t)]dy

where

U(x;t) - U IU(X; U2 - U I

and



-147-

--

-0

4@D
LLL

CD

E E E

I I I I I I I I I

* (UJWu) f (uJW) ff ( uJ) f

IC l



-148 -

t+Tf/2
U(X 0 (u(xTr))dTUxtf It-Tf /2

It should be noted that, if the entire integration interval of the last equation is well

removed from the disturbance, or if the flow is excited by the carrier signal only,

U(x;t) = U(x) and thus e(xz) = e(x.z). Figure 5.10 is a sequence of contour plots of

AO(x,z;t) - G(x,z;t) - O(xz) at a number of streamwise stations. In each frame, AO(x,z;t)

is shifted in time by Ax/U c . The contours in each frame, for a given x. are shown in

the z-t plane. Although an estimate that is based on an integral measure of the

distortion of the base flow may be conservative, it exhibits a strong spreading rate in

the spanwise direction. The slope Az/Ax 5 0.2, indicating that the disturbance spreads

in both spanwise directions at a speed approximately equal to 0.2Uc .

5.5. Demodulation of the Pulsed Disturbance: The Fundamental Wave Packet

A demodulation technique is used to discriminate between the response of the

flow to the carrier signal and to the modulating pulse (see Appendix), and to decompose

the response of the flow to pulsed excitation into a family of modal wave packets.

Cross-stream distributions of amplitude and phase of streamwise velocity

fluctuations at the forcing frequency ur are shown in figure 5.11 (solid lines) for 6

streamwise stations. These data correspond to a single frequency component in the

power spectrum of (upert). Figure 5.11(a) shows that the amplitude of the streamwise

velocity fluctuations decays exponentially with y when the base flow is subjected to

two-dimensional time-harmonic excitation. The phase of the streamwise velocity

0 fluctuations of the base flow changes continuously across the mixing layer, and the

phase difference across the shear layer is approximately 1800 (figure 5.11 b). This phase

reversal is caused by the two-dimensional spanwise primary vortices. Also shown in

figure 5.11 (using symbols) are cross-stream profiles of the amplitude, AO. and the

0
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phase, l, I of a modulated velocity signal, S0 (xt), when the flow is subjected to time-

harmonic excitation. The excellent agreement between the pairs of profiles is

noteworthy because S0(x.t) includes all spectral components within the frequency band,

Awo, centered at the fundamental frequency, vf. This indicates that much of the

spectral broadening around the forcing frequency and its higher harmonics is due to the

pulsed amplitude modulation of the harmonic excitation signal. It should also be

mentioned that the calculation of the amplitude and the phase of S0 (xt) is actually a

one-dimensional wavelet transform in time at the fundamental frequency (see

Appendix). The wavelet transform, however, cannot discriminate between the wave

packet and the harmonic wave train.

Perspective views of the fundamental wave packet, WP0(X,t), at a fixed cross-

stream elevation in the z-t plane are shown in figure 5.12 for 6 streamwise stations,

25.4 mm apart (51 mm < x < 178 mm). Also shown in figure 5.12 are the

corresponding contour plots of Wp 0 (xt). Note that, at the first 3 upstream stations, the

packet has one peak close to its center, while farther downstream (x = 152 mm), the

packet develops two peaks away from its spanwise center. At x - 178 mm. there are a

number of spanwise maxima having a spanwise wavelength of approximately 12.5 mm

(2 0. 3 1,K14). The wave packet apparently develops nonlinear characteristics, which

subsequently lead to its breakdown to turbulence. It is interesting to note that, in

contrast to wave packets in boundary layers where wave fronts in the spanwise

direction are highly curved (Gaster & Grant 1975), the wave fronts within the packet in

the plane shear layer are almost parallel to the spanwise direction.

Similar to figure 5.7, profiles of velocity perturbations associated with the

fundamental wave packet are plotted in the y-t plane z - 0 (figure 5.13) for x - 76, 127,

and 178 mm. Amplitude features of the packet are emphasized using a time sequence

of cross-stream profiles, while cross-stream phase features are emphasized using time

profiles at a number of equally spaced cross-stream elevations. The amplitude of the

0"
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packet is largest near y - 0. and it decreases with downstream distance. Similar to the

two-dimensional base flow, the cross-stream phase shift is approximately i.

The spanwise spreading rate of the packet is measured using the spanwise

expansion of a selected contour level at a given cross-stream elevation. The packet's

envelope at y = 10 mm at each streamwise station is normalized to the local maximum.

and the spanwise extent of the contour level. 0.6, is used to determine the streamwise

spreading. Figure 5.14 shows that the spreading is approximately linear with

downstream distance, having a slope 2Az/Ax - 2Uz/U c - 0.4, where Uz is the spanwise

spreading velocity of the fundamental wave packet in either spanwise direction and

Uz W 0.2UC. This is consistent with the momentum thickness measure (5.4).

We next determine the dispersion relation for the fundamental wave packet. Since

there is no traveling wave in the cross-stream direction for plane mixing layers, the

wave number component a.e may be ignored. Because the packet in the plane shear

layer appears to be almost two-dimensional, we postulate that o-Z must be very small

compared to otx. Therefore, only the streamwise wave number ". was determined by

measuring the streamwise variation of phase for a given frequency o. This method is

also used by Corke & Mangano (1989) in a Blasius boundary layer. Figure 5.15(a)

shows the streamwise variation in phase of the time-harmonic wave train at the fixed

(y.z) station for different frequencies. For a given w, the corresponding (local) wave

number ax is determined by the (local) slope of the curve fitted to the same set of data

(figure 5.15a). Since all local slopes in figure 5.15(a) are the same. Ct is independent of

x. The normalization with wof/c. in figure 5.15(a) is helpful because for, a non-

dispersive wave, all data in figure 5.15(a) should fall onto one straight line, the slope of

which is the wave number af:

A .o f .![ O _- O0f M e, f .. Otf,

Ax W W Vc((0) Vc((W)
0

0
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where the subscript f indicates a reference to the fundamental frequency of the time-

harmonic wave train and Vcr is the crest velocity.

The dispersion relation for the time-harmonic wave train is shown in figure

5.15(b). The crest velocity, Vcr - w/c (which is also the phase velocity for one-

dimensional plane waves), is constant for all frequencies. The grout velocity is also

equal to the crest velocity, as can be seen from the straight line in figure 5.15(b).

meaning that wave trains at different frequencies all travel at the same speed.

Similarly, the streamwise development of the phase of the fundamental wave

packet is shown in figure 5.16(a) for frequencies within the band-pass filter, and the

dispersion relation of the wave packet is shown in figure 5.16(b). The crest speed of

the wave packet at a given frequency within the frequency window is the same as the

speed of the packet. Hence, the wave packet is non-dispersive, and kinematic wave

theory may be applied (Landahl 1982). Balsa (1988) pointed out that, for free shear

layers subjected to two-dimensional external excitation, the unstable modes are non-

dispersive. The phase speed of the packet is (UI+U 2)/2 - const, and its streamwise

spreading arises from variations in the growth rate rather than from variations in phase

velocity with wave number. The present experimental results are in general agreement

with his conclusions.

5.6. Temporally and Spanwise-Periodic Pulsed Disturbances

A spanwise and streamwise staggered pattern of three-dimensional pulse trains is

superimposed on a two-dimensional time-harmonic wave train (Vf - 6 Hz), as shown in

figure 5.17. The top frame of the figure shows a pulse train superimposed on the two-

dimensional wave train and, in the bottom frame, dotted lines corresponding to peaks of

the two-dimensional wave train are plotted parallel to the span. The rectangles in the

bottom frame represent the relative sizes and locations of pulses in the spanwise and

streamwise directions. In the present experiments, the free-stream velocities of the base
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flow are 36 and 12 cm/s, and X") - Uc/vf = 4 cm. Similar to the procedure described

* in §5.2, the pulsed input to spanwise segments of four surface heaters is repeated every

four cycles of the harmonic wave train (i.e. MP - 4). The individual pulses are

identical to the single pulse described in §5.2 (i.e., each pulse is synthesized by four

* heating elements, -y - 5. and the pulse duration is O.4Tf). As can be seen from figure

5.17, the pulse trains are spanwise periodic. Because of the rapid spanwise growth of

pulsed disturbances, the smallest spanwise spacings between the (centers) of two pulse

• trains of the same phases are chosen to be equal to the length of 12 heating elements (76

mm), or 1.9XKH. The staggered pattern is achieved by a phase shift between two

adjacent pulse trains that corresponds to half a period. The spanwise range of

* measurement of the streamwise velocity component is 120 mm, centered at the midspan.

The surface (u'trms) - 0.055U c in the y-z-t coordinates at x - 125 mm is shown in

figure 5.18. Each pulse is located in the braid region between adjacent primary

0 vortices and induces clear deformations. The pulses form a spanwise and streamwise

periodic and staggered pattern. As shown in the previous section, a single pulsed

disturbance spreads rapidly in the spanwise direction. This is no longer the case when

0 neighboring pulsed disturbances are allowed to interact. The present experiments show

that the spanwise growth of the individual disturbances is quenched, and surface plots

of (U'trms exhibit almost no variations with x.

0 Figure 5.19(a) shows a time sequence of spanwise profiles of (upet, measured at

y - 0 and x - 125 mm, when the flow is excited with the pattern of pulsed

disturbances described above. The harmonically excited flow is shown for comparison

in figure 5.19(b). Figure 5.19(a) shows three spanwise pulse trains. Velocity

fluct,'. .ions at the top and at the bottom of the frame are similar and in-phase, but out-

of-phase with respect to the velocity perturbations at the center. The elapsed time

between two peaks at z - 0. for example, is approximately equal to the period of the

pulse train. Within this time, there are three cycles with relative lower amplitude. This

0
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indicates that the power spectra of velocity fluctuations at the spanwise locations of the

pulse train should have very large components. not only at frequency U/ 4 , but also at

3vf/4, where vf is the fundamental frequency of the wave train. Notice that not only is

the flow no longer two dimensional, but there are no visible remnants of the two-

dimensional wave train. There are interactions between two adjacent (phase-shifted)

pulse trains, and between the pulse train and the fundamental wave train,

Contours of the power spectra of (upert) at y = 0 and x = 75, 125, and 175mm are

shown in the z-frequency plane (figure 5.20). As expected, in spanwise locations of the

pulse train, there are three peaks at frequency vf/ 4 = 1.5 Hz, which is the frequency of

pulse trains, and at 3vf/4. The power spectral component at the fundamental wave

train frequency, vf = 6 Hz, is very small at x = 75 mm, and it becomes somewhat

stronger farther downstream. There are two strong peaks in the power spectrum at

Vr/ 2 at spanwise stations between two adjacent pulse trains. This subharmonic

component is probably generated by spanwise interaction of staggered pulse trains. As

can be seen from the surface plot of (u') in figure 5.19, the time between passage of

two vortical structures at the interface between two adjacent pulse trains is

approximately equal to 2T. Finally, figure 5.21 shows power spectra of (upert of the

harmonically and pulsed excited flow (bottom) at x = 175 mm, (y,z) = 0. It is clear that

the pulsed disturbance leads to a drastic increase in the amplitude of spectral

components at high frequencies, suggesting a premaure transition to turbulence.

5.7. Conclusions

The investigation reported in §5 appears to be the first experimental study of

three-dimensional pulsed disturbances in a plane mixing layer, although related

experiments have been conducted for the flat-plate boundary layer (Gaster & Grant

1975) and for an axisymmetric jet (Sokolov et al. 1980).
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The present experiments consisted of two parts: In the first part, the evolution of

a single three-dimensional pulsed disturbance in the shear layer was studied in detail.

The second part focused on a cluster of temporally and spatially regular patterns of

pulsed disturbances. The disturbances were effected via amplitude modulation of a

spanwise-uniform time-harmonic wave train, which provided a clear phase reference

for the phase-locked velocity measurements. The amplitude of the pulse was five times

the amplitude of the wave train, and its duration was 0. 4 Tf. We have found that the

evolution of the pulsed disturbance depends crucially on the time delay between the

modulation pulse and the carrier wave train, and that the plane mixing layer is most

receptive to pulsed excitation when the pulse appears in the braid region between

adjacent primary vortices of the base flow. The temporal change in ensemble-averaged

cross-stream profiles of the streamwise velocity due to passage of the disturbance is

clearly distinguishable from the response to the wave train alone, and it is felt across

the entire width of the shear layer.

The evolution of vortex structures was studied using flow visualization and three-

dimensional distributions of turbulence intensity of the streamwise velocity component.

The pulsed disturbance resulted in a spanwise-localized pairing of the primary vortices

that occurred much farther upstream than for the nominally two-dimensional pairing of

the harmonically forced flow. The high levels of turbulence intensity suggests a

transient increase of mixing. An amplitude demodulation technique was used to

decompose the modulated velocity signals into a family of modal wave packets, and the

evolution of the fundamental wave packet was studied in detail. We found that the

wave packet spreads more rapidly in the spanwise direction than in the streamwise

direction. In fact, its growth in the streamwise direction is limited by the primary two-

dimensional instability of the base flow, which is in agreement with the findings of

Glezer et al. (1989) and Dallard & Browand (1992). The wave fronts of the wave

packet in plane mixing layers, as predicted by Balsa (1989), are almost parallel to the
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spanwise direction (z-axis), in contrast to a boundary layer wave packet (Gaster &

Grant 1975), where wave fronts of the packet are bowed. This feature of the shear

layer wave packet is due to the fact that the cross-stream distribution of the mean

streamwise velocity is almost antisymmetric relative to the cross-stream elevation where

U = Uc . The fundamental wave packet in the present experiment spread in the

spanwise direction at a rate approximately equal to 0.2U e . The dispersion relation of

the fundamental wave packet shows that the wave packet in the plane shear layer is

non-dispersive, in agreement with the results of Balsa (1989).

In the second part of the present experiments, three-dimensional pulsed

disturbances forming a temporally and spatially periodic and staggered pattern were

superimposed on the two-dimensional time-harmonic wave train. Contour plots of

power spectra of the streamwise velocity exhibit strong spectral components at the

frequency of the pulse train, Vr/ 4 , as well as at 3vf/4, which is a direct result of the

streamwise nonlinear interaction between the pulse train and the wave train. Also

prominent are spectral components at the subharmonic, v/ 2 . which are due to spanwise

interaction between two adjacent, staggered pulse trains. Finally, compared to the

harmonically excited flow, the pattern of pulsed disturbances causes a drastic increase

in the amplitudes of high frequency, suggesting turbulent mixing enhancement.
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Appendix: Demodulation Technique

A demodulation technique was developed to discriminate between the response of

the flow to the carrier signal and to the modulating pulse. The objective was to

decompose the response into a family of modal wave packets, each having a narrow

band of frequencies centered around the excitation frequency and its higher harmonics.

A similar technique was used by Kim, Khadra & Powers (1980) to study modulated

waves in a weakly ionized plasma, and by Miksad, Jones. Powers, Kim & Khadra (1982)

to study the interaction of two harmonic wave trains of different frequencies in a two-

dimensional wake.

0
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Consider an ensemble-averaged time series of the velocity perturbation

(Upert(t)) - (u(t)) - U (A. I)

where (u(t)) is the ensemble-averaged velocity and U represents the time-averaged mean

velocity. This time series (figure A.lb) has a power spectrum I (opert(o))I (figure A. la),

which suggests that the response of the flow to the excitation is primarily concentrated

in relatively narrow frequency bands, Aw, around the carrier frequency. Co, and its

harmonics, (j + 1)o0. where j is an integer. The spectral components within these

frequency bands may be obtained by applying a band-pass filter *(W), centered at

(j+l) 0. to (Opert()). Figure A.l(a) shows one example of such a filter. Taking the

inverse Fourier transform, the filtered signal around the fundamental frequency o0 is

W o +AWo

So(t) = 2 J (Upert(O)) ^ () eiwtdco . (A.2)

Note that since (upt(t)) i., real and its Fourier transform is complex conjugate in

W [(apert(-o)) - (UPert*(w))] and. because the filter ,'(o) is real and only has non-zero

values in the interval [wo-Aw, oo+o], the inverse Fourier transform of (apert(w)) g'(o)

is complex. The amplitude and the phase of S0 (t) can be easily determined by its real

and imaginary parts.

On the other hand, So(t) in Eq.(A-2) may also be expressed as

So (t) - AM0 (t) ei[ 0t+$o(t) (A.3)

where

AM0 (t) = I So(t) (A.4)

and

*o (t) = tan-I (Re{So (t)}/lm{So (t)}) - wO t . (A. 5)

0

I0
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The amplitude and phase of the modulated fundamental modal signal can be

written as

AM0 (t) - Aco[l + co(t)] (A.6)

and

0 o(t) - *'o + 0o0t M (A. 7)

where ACO and *Co. which are independent of time, are the amplitude and phase of the

spectral component of (upert(t)) within Aw. When the flow is excited by the carrier

signal only, I cO(t is the degree of amplitude modulation of So(t) resulting from passage

of the disturbance, and 00(t) represents the change in phase. The temporal variation of

co and 00 reflects the passage of the disturbance at the measurement station. Notice

that ACO co(t) is not the amplitude of the fundamental modal wave packet if 0 (t) varies

in time.

Figure A.1(b) shows the real part of So(t) (as dotted curve), whereas its amplitude

AMo(t) is plotted in figure A.1(c) in which the amplitude of the fundamental carrier

signal, Aco, is also indicated. The phase 'lo(t) is shown in figure A.l(d). Note that

ACO and 4C' are the asymptotic values of AMo(t) and *o(t) before or after the

disturbance passes the measurement station. Furthermore, co(t) may be negative (but

I+co(t) 0), indicating that the amplitude of flow response to the carrier signal may be

diminished by the disturbance.

The modulated fundamental modal wave So(t) can be thought of as the sum of a

(complex) fundamental modal wave train, Wco (t), and a (complex) wave packet, Wpo (t):

S0 (t) - We 0 (t) + Wp0 (t) (A.8)

with

Wo(t) - ACO exp[i(wot + *co)]  (A.9)

and

WPO (t) - APO (t) exp[i(wot + '1co + 60 (t))] , (A. 10)
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where Ac0 and Ap0 (t) represent, respectively, amplitudes of the fundamental modal

carrier wave train and the wave packet, and 60 (t) is the relative phase between the

wave packet and the wave train.

From Equations (A-3) and (A-6) to (A-10), one obtains

Ap 0 (t) e i0 (t) - AM0 (t) ei00 (t) - Ac0 (A.1 1)

Therefore.

Ap 0 (t) - AM0 (t)
2 + nc02 - 2 AM0 (t)Ac0 cos(Co(t)) (A. 12)

and

AM0 (t) sin 00 (t)
tan6°(t) = AMo (t) cos 00(t)-Ac 0  (A.13)

Notice that when 0 (t) - 0, Eqs. (A.12) and (A.13) become

Apo kt) - AMo(t) - Ao - Acoco(t)

and

6o W)- 0

The fundamental wave packet, Re{WPo (t)}, and its amplitude Apo (t) are shown in figure

A.1(e). The j-th modal wave packet can be calculated similarly using the same

procedure by replacing the subscript 0 with J and letting cj - jo 0 .

A final note. The function So in Eq.(A.2) is, up to a normalization factor, a

wavelet transform of (upen(t)) using a wavelet g[(t-b)/a] whose Fourier transform is

g(aw) (which has finite supports) at the scale a corresponding to the resonance frequency

Wo0 . The admissibility condition for the wavelet is also satisfied, i.e.,

fg(t)dt - j(w - 0) - 0. More information about the wavelet transform can be found, for

example, in Grossmann & Morlet (1984, 1985).
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